
http://www.nd-warez.info/
97 Things Every Programmer Should Know

http://www.directtextbook.com/prices/9780596809485

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.nd-warez.info/

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

97 Things
Every Programmer Should Know

Collective Wisdom from the Experts

Edited by Kevlin Henney

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

97 Things Every Programmer Should Know
Edited by Kevlin Henney

Copyright © 2010 Kevlin Henney. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Series Editor: Richard Monson-Haefel
Production Editor: Rachel Monaghan
Proofreader: Rachel Monaghan

Compositor: Ron Bilodeau
Indexer: Julie Hawks
Interior Designer: Ron Bilodeau
Cover Designers: Mark Paglietti and
 Susan Thompson

Print History:

 February 2010: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Programmer
Should Know and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
clarified as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and au-
thors assume no responsibility for errors and omissions, or for damages resulting from the use
of the information contained herein.

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-80948-5

[SB]

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

To absent friends

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

v

Contents

Contributions by Category . xv

Preface . xxiii

Act with Prudence . 2

Seb Rose

Apply Functional Programming Principles 4

Edward Garson

Ask, “What Would the User Do?” (You Are Not the User) . . 6

Giles Colborne

Automate Your Coding Standard 8

Filip van Laenen

Beauty Is in Simplicity . 10

Jørn Ølmheim

Before You Refactor . 12

Rajith Attapattu

Beware the Share . 14

Udi Dahan

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

vi Contents

The Boy Scout Rule . 16

Robert C. Martin (Uncle Bob)

Check Your Code First Before Looking to Blame Others . . . 18

Allan Kelly

Choose Your Tools with Care 20

Giovanni Asproni

Code in the Language of the Domain 22

Dan North

Code Is Design . 24

Ryan Brush

Code Layout Matters . 26

Steve Freeman

Code Reviews . 28

Mattias Karlsson

Coding with Reason . 30

Yechiel Kimchi

A Comment on Comments . 32

Cal Evans

Comment Only What the Code Cannot Say 34

Kevlin Henney

Continuous Learning . 36

Clint Shank

Convenience Is Not an -ility . 38

Gregor Hohpe

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

viiContents

Deploy Early and Often . 40

Steve Berczuk

Distinguish Business Exceptions from Technical 42

Dan Bergh Johnsson

Do Lots of Deliberate Practice. 44

Jon Jagger

Domain-Specific Languages . 46

Michael Hunger

Don’t Be Afraid to Break Things 48

Mike Lewis

Don’t Be Cute with Your Test Data 50

Rod Begbie

Don’t Ignore That Error! . 52

Pete Goodliffe

Don’t Just Learn the Language, Understand Its Culture . . 54

Anders Norås

Don’t Nail Your Program into the Upright Position 56

Verity Stob

Don’t Rely on “Magic Happens Here” 58

Alan Griffiths

Don’t Repeat Yourself . 60

Steve Smith

Don’t Touch That Code! . 62

Cal Evans

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

viii Contents

Encapsulate Behavior, Not Just State 64

Einar Landre

Floating-Point Numbers Aren’t Real 66

Chuck Allison

Fulfill Your Ambitions with Open Source 68

Richard Monson-Haefel

The Golden Rule of API Design 70

Michael Feathers

The Guru Myth . 72

Ryan Brush

Hard Work Does Not Pay Off 74

Olve Maudal

How to Use a Bug Tracker . 76

Matt Doar

Improve Code by Removing It 78

Pete Goodliffe

Install Me . 80

Marcus Baker

Interprocess Communication Affects Application
Response Time . 82

Randy Stafford

Keep the Build Clean . 84

Johannes Brodwall

Know How to Use Command-Line Tools 86

Carroll Robinson

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

ixContents

Know Well More Than Two Programming Languages 88

Russel Winder

Know Your IDE . 90

Heinz Kabutz

Know Your Limits . 92

Greg Colvin

Know Your Next Commit . 94

Dan Bergh Johnsson

Large, Interconnected Data Belongs to a Database 96

Diomidis Spinellis

Learn Foreign Languages . 98

Klaus Marquardt

Learn to Estimate . 100

Giovanni Asproni

Learn to Say, “Hello, World” . 102

Thomas Guest

Let Your Project Speak for Itself 104

Daniel Lindner

The Linker Is Not a Magical Program 106

Walter Bright

The Longevity of Interim Solutions 108

Klaus Marquardt

Make Interfaces Easy to Use Correctly
and Hard to Use Incorrectly . 110

Scott Meyers

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

x Contents

Make the Invisible More Visible 112

Jon Jagger

Message Passing Leads to Better Scalability
in Parallel Systems . 114

Russel Winder

A Message to the Future . 116

Linda Rising

Missing Opportunities for Polymorphism 118

Kirk Pepperdine

News of the Weird: Testers Are Your Friends 120

Burk Hufnagel

One Binary . 122

Steve Freeman

Only the Code Tells the Truth 124

Peter Sommerlad

Own (and Refactor) the Build 126

Steve Berczuk

Pair Program and Feel the Flow 128

Gudny Hauknes, Kari Røssland, and Ann Katrin Gagnat

Prefer Domain-Specific Types to Primitive Types 130

Einar Landre

Prevent Errors . 132

Giles Colborne

The Professional Programmer 134

Robert C. Martin (Uncle Bob)

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xiContents

Put Everything Under Version Control 136

Diomidis Spinellis

Put the Mouse Down and Step Away from the Keyboard . 138

Burk Hufnagel

Read Code . 140

Karianne Berg

Read the Humanities . 142

Keith Braithwaite

Reinvent the Wheel Often . 144

Jason P. Sage

Resist the Temptation of the Singleton Pattern 146

Sam Saariste

The Road to Performance Is Littered
with Dirty Code Bombs . 148

Kirk Pepperdine

Simplicity Comes from Reduction 150

Paul W. Homer

The Single Responsibility Principle 152

Robert C. Martin (Uncle Bob)

Start from Yes . 154

Alex Miller

Step Back and Automate, Automate, Automate 156

Cay Horstmann

Take Advantage of Code Analysis Tools 158

Sarah Mount

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xii Contents

Test for Required Behavior, Not Incidental Behavior. 160

Kevlin Henney

Test Precisely and Concretely 162

Kevlin Henney

Test While You Sleep (and over Weekends) 164

Rajith Attapattu

Testing Is the Engineering Rigor
of Software Development . 166

Neal Ford

Thinking in States . 168

Niclas Nilsson

Two Heads Are Often Better Than One 170

Adrian Wible

Two Wrongs Can Make a Right (and Are Difficult to Fix) . 172

Allan Kelly

Ubuntu Coding for Your Friends 174

Aslam Khan

The Unix Tools Are Your Friends 176

Diomidis Spinellis

Use the Right Algorithm and Data Structure 178

Jan Christiaan “JC” van Winkel

Verbose Logging Will Disturb Your Sleep 180

Johannes Brodwall

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xiiiContents

WET Dilutes Performance Bottlenecks 182

Kirk Pepperdine

When Programmers and Testers Collaborate 184

Janet Gregory

Write Code As If You Had to Support It
for the Rest of Your Life . 186

Yuriy Zubarev

Write Small Functions Using Examples 188

Keith Braithwaite

Write Tests for People . 190

Gerard Meszaros

You Gotta Care About the Code 192

Pete Goodliffe

Your Customers Do Not Mean What They Say 194

Nate Jackson

Contributors . 196

Index . 221

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xv

Contributions
by Category

Bugs and Fixes

Check Your Code First Before Looking to Blame Others 18

Don’t Touch That Code! . 62

How to Use a Bug Tracker . 76

Two Wrongs Can Make a Right (and Are Difficult to Fix) 172

Build and Deployment

Deploy Early and Often . 40

Don’t Touch That Code! . 62

Install Me . 80

Keep the Build Clean . 84

Let Your Project Speak for Itself . 104

One Binary . 122

Own (and Refactor) the Build . 126

Coding Guidelines and Code Layout

Automate Your Coding Standard . 8

Code Layout Matters . 26

Code Reviews . 28

A Comment on Comments . 32

Comment Only What the Code Cannot Say 34

Take Advantage of Code Analysis Tools 158

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xvi Contents

Design Principles and Coding Techniques

Apply Functional Programming Principles 4

Ask, “What Would the User Do?” (You Are Not the User) 6

Beauty Is in Simplicity . 10

Choose Your Tools with Care . 20

Code in the Language of the Domain 22

Code Is Design . 24

Coding with Reason . 30

Convenience Is Not an -ility . 38

Distinguish Business Exceptions from Technical 42

Don’t Repeat Yourself . 60

Encapsulate Behavior, Not Just State 64

The Golden Rule of API Design . 70

Interprocess Communication Affects Application

Response Time . 82

Make Interfaces Easy to Use Correctly

and Hard to Use Incorrectly . 110

Message Passing Leads to Better Scalability

in Parallel Systems . 114

Missing Opportunities for Polymorphism 118

Only the Code Tells the Truth . 124

Prefer Domain-Specific Types to Primitive Types 130

Prevent Errors . 132

Resist the Temptation of the Singleton Pattern 146

The Single Responsibility Principle . 152

Thinking in States . 168

WET Dilutes Performance Bottlenecks 182

Domain Thinking

Code in the Language of the Domain 22

Domain-Specific Languages . 46

Learn Foreign Languages . 98

Prefer Domain-Specific Types to Primitive Types 130

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xviiContents

Read the Humanities . 142

Thinking in States . 168

Write Small Functions Using Examples 188

Errors, Error Handling, and Exceptions

Distinguish Business Exceptions from Technical 42

Don’t Ignore That Error! . 52

Don’t Nail Your Program into the Upright Position 56

Prevent Errors . 132

Verbose Logging Will Disturb Your Sleep 180

Learning, Skills, and Expertise

Continuous Learning . 36

Do Lots of Deliberate Practice. 44

Don’t Just Learn the Language, Understand Its Culture 54

Fulfill Your Ambitions with Open Source 68

The Guru Myth . 72

Hard Work Does Not Pay Off . 74

Read Code . 140

Read the Humanities . 142

Reinvent the Wheel Often . 144

Nocturnal or Magical

Don’t Rely on “Magic Happens Here” 58

Don’t Touch That Code! . 62

The Guru Myth . 72

Know How to Use Command-Line Tools 86

The Linker Is Not a Magical Program 106

Test While You Sleep (and over Weekends) 164

Verbose Logging Will Disturb Your Sleep 180

Write Code As If You Had to Support It

for the Rest of Your Life . 186

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xviii Contents

Performance, Optimization, and
Representation

Apply Functional Programming Principles 4

Floating-Point Numbers Aren’t Real . 66

Improve Code by Removing It . 78

Interprocess Communication Affects Application

Response Time . 82

Know Your Limits . 92

Large, Interconnected Data Belongs to a Database 96

Message Passing Leads to Better Scalability

in Parallel Systems . 114

The Road to Performance Is Littered with Dirty Code Bombs . . 148

Use the Right Algorithm and Data Structure 178

WET Dilutes Performance Bottlenecks 182

Professionalism, Mindset, and Attitude

Continuous Learning . 36

Do Lots of Deliberate Practice. 44

Hard Work Does Not Pay Off . 74

The Longevity of Interim Solutions . 108

The Professional Programmer . 134

Put the Mouse Down and Step Away from the Keyboard 138

Testing Is the Engineering Rigor of Software Development 166

Write Code As If You Had to Support It

for the Rest of Your Life . 186

You Gotta Care About the Code . 192

Programming Languages and Paradigms

Apply Functional Programming Principles 4

Domain-Specific Languages . 46

Don’t Just Learn the Language, Understand Its Culture 54

Know Well More Than Two Programming Languages 88

Learn Foreign Languages . 98

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xixContents

Refactoring and Code Care

Act with Prudence . 2

Before You Refactor . 12

The Boy Scout Rule . 16

Comment Only What the Code Cannot Say 34

Don’t Be Afraid to Break Things . 48

Improve Code by Removing It . 78

Keep the Build Clean . 84

Know Your Next Commit . 94

The Longevity of Interim Solutions . 108

A Message to the Future . 116

Only the Code Tells the Truth . 124

Own (and Refactor) the Build . 126

The Professional Programmer . 134

The Road to Performance Is Littered with Dirty Code Bombs . . 148

Simplicity Comes from Reduction . 150

Ubuntu Coding for Your Friends . 174

You Gotta Care About the Code . 192

Reuse Versus Repetition

Beware the Share . 14

Convenience Is Not an -ility . 38

Do Lots of Deliberate Practice. 44

Don’t Repeat Yourself . 60

Reinvent the Wheel Often . 144

Use the Right Algorithm and Data Structure 178

WET Dilutes Performance Bottlenecks 182

Schedules, Deadlines, and Estimates

Act with Prudence . 2

Code Is Design . 24

Know Your Next Commit . 94

Learn to Estimate . 100

Make the Invisible More Visible . 112

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xx Contents

Simplicity

Beauty Is in Simplicity . 10

Learn to Say, “Hello, World” . 102

A Message to the Future . 116

Simplicity Comes from Reduction . 150

Teamwork and Collaboration

Code Reviews . 28

Learn Foreign Languages . 98

Pair Program and Feel the Flow . 128

Start from Yes . 154

Two Heads Are Often Better Than One 170

Ubuntu Coding for Your Friends . 174

When Programmers and Testers Collaborate 184

Tests, Testing, and Testers

Apply Functional Programming Principles 4

Code Is Design . 24

Don’t Be Cute with Your Test Data . 50

The Golden Rule of API Design . 70

Make Interfaces Easy to Use Correctly and Hard to Use

Incorrectly . 110

Make the Invisible More Visible . 112

News of the Weird: Testers Are Your Friends 120

Test for Required Behavior, Not Incidental Behavior. 160

Test Precisely and Concretely . 162

Test While You Sleep (and over Weekends) 164

Testing Is the Engineering Rigor of Software Development 166

When Programmers and Testers Collaborate 184

Write Small Functions Using Examples 188

Write Tests for People . 190

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xxiContents

Tools, Automation, and Development
Environments

Automate Your Coding Standard . 8

Check Your Code First Before Looking to Blame Others 18

Choose Your Tools with Care . 20

Don’t Repeat Yourself . 60

How to Use a Bug Tracker . 76

Know How to Use Command-Line Tools 86

Know Your IDE . 90

Large, Interconnected Data Belongs to a Database 96

Learn to Say, “Hello, World” . 102

Let Your Project Speak for Itself . 104

The Linker Is Not a Magical Program 106

Put Everything Under Version Control 136

Step Back and Automate, Automate, Automate 156

Take Advantage of Code Analysis Tools 158

Test While You Sleep (and over Weekends) 164

The Unix Tools Are Your Friends . 176

Users and Customers

Ask, “What Would the User Do?” (You Are Not the User) 6

Domain-Specific Languages . 46

Make Interfaces Easy to Use Correctly and Hard to Use

Incorrectly . 110

News of the Weird: Testers Are Your Friends 120

Prevent Errors . 132

Read the Humanities . 142

Your Customers Do Not Mean What They Say 194

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xxiii

The newest computer can merely compound, at speed, the oldest problem in the
relations between human beings, and in the end the communicator will be confronted

with the old problem, of what to say and how to say it.
—Edward R. Murrow

PROGRAMMERS HAVE A LOT ON THEiR MiNDS. Programming languages,
programming techniques, development environments, coding style, tools,
development process, deadlines, meetings, software architecture, design pat-
terns, team dynamics, code, requirements, bugs, code quality. And more. A lot.

There is an art, craft, and science to programming that extends far beyond
the program. The act of programming marries the discrete world of comput-
ers with the fluid world of human affairs. Programmers mediate between the
negotiated and uncertain truths of business and the crisp, uncompromising
domain of bits and bytes and higher constructed types.

With so much to know, so much to do, and so many ways of doing so, no
single person or single source can lay claim to “the one true way.” Instead, 97
Things Every Programmer Should Know draws on the wisdom of crowds and
the voices of experience to offer not so much a coordinated big picture as a
crowdsourced mosaic of what every programmer should know. This ranges
from code-focused advice to culture, from algorithm usage to agile thinking,
from implementation know-how to professionalism, from style to substance.

The contributions do not dovetail like modular parts, and there is no intent
that they should—if anything, the opposite is true. The value of each contribu-
tion comes from its distinctiveness. The value of the collection lies in how the
contributions complement, confirm, and even contradict one another. There
is no overarching narrative: it is for you to respond to, reflect on, and connect
together what you read, weighing it against your own context, knowledge, and
experience.

Preface

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

xxiv Preface

Permissions
The licensing of each contribution follows a nonrestrictive, open source
model. Every contribution is freely available online and licensed under a Cre-
ative Commons Attribution 3.0 License, which means that you can use the
individual contributions in your own work, as long as you give credit to the
original author:

http://creativecommons.org/licenses/by/3.0/us/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book, we list errata and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596809485/
The companion website for this book, where you can find all the contributions,
contributor biographies, and more, is at:

http://programmer.97things.oreilly.com
You can also follow news and updates about this book and the website on Twitter:

http://twitter.com/97TEPSK
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com/

Safari® Books Online
Safari Books Online is an on-demand digital library that lets
you easily search over 7,500 technology and creative refer-
ence books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access new

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.oreilly.com/catalog/9780596522698/
http://programmer.97things.oreilly.com
http://twitter.com/97TEPSK
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

1Preface

titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code sam-
ples, organize your favorites, download chapters, bookmark key sections, cre-
ate notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
Many people have contributed their time and their insight, both directly and
indirectly, to the 97 Things Every Programmer Should Know project. They all
deserve credit.

Richard Monson-Haefel is the 97 Things series editor and also the editor of
the first book in the series, 97 Things Every Software Architect Should Know, to
which I contributed. I would like to thank Richard for trailblazing the series
concept and its open contribution approach, and for enthusiastically supporting
my proposal for this book.

I would like to thank all those who devoted the time and effort to contribute
items to this project: both the contributors whose items are published in this
book and the others whose items were not selected, but whose items are also
published on the website. The high quantity and quality of contributions made
the final selection process very difficult—the hardcoded number in the book’s
title unfortunately meant there was no slack to accommodate just a few more.
I am also grateful for the additional feedback, comments, and suggestions
provided by Giovanni Asproni, Paul Colin Gloster, and Michael Hunger.

Thanks to O’Reilly for the support they have provided this project, from hosting
the wiki that made it possible to seeing it all the way through to publication in
book form. People at O’Reilly I would like to thank specifically are Mike Loukides,
Laurel Ackerman, Edie Freedman, Ed Stephenson, and Rachel Monaghan.

It is not simply the case that the book’s content was developed on the Web: the
project was also publicized and popularized on the Web. I would like to thank
all those who have tweeted, retweeted, blogged, and otherwise spread the word.

I would also like to thank my wife, Carolyn, for bringing order to my chaos, and
to my two sons, Stefan and Yannick, for reclaiming some of the chaos.

I hope this book will provide you with information, insight, and inspiration.

Enjoy!
—Kevlin Henney

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://my.safaribooksonline.com

2 97 Things Every Programmer Should Know

Act with
Prudence
Seb Rose

Whatever you undertake, act with prudence and
consider the consequences.

—Anon

NO MATTER HOW COMFORTABLE A SCHEDULE LOOKS at the beginning of
an iteration, you can’t avoid being under pressure some of the time. If you find
yourself having to choose between “doing it right” and “doing it quick,” it is
often appealing to “do it quick” with the understanding that you’ll come back
and fix it later. When you make this promise to yourself, your team, and your
customer, you mean it. But all too often, the next iteration brings new prob-
lems and you become focused on them. This sort of deferred work is known
as technical debt, and it is not your friend. Specifically, Martin Fowler calls this
deliberate technical debt in his taxonomy of technical debt,* and it should not
be confused with inadvertent technical debt.

Technical debt is like a loan: you benefit from it in the short term, but you
have to pay interest on it until it is fully paid off. Shortcuts in the code make
it harder to add features or refactor your code. They are breeding grounds
for defects and brittle test cases. The longer you leave it, the worse it gets. By
the time you get around to undertaking the original fix, there may be a whole
stack of not-quite-right design choices layered on top of the original problem,
making the code much harder to refactor and correct. In fact, it is often only
when things have got so bad that you must fix the original problem, that you
actually do go back to fix it. And by then, it is often so hard to fix that you really
can’t afford the time or the risk.

* http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

3Collective Wisdom from the Experts

There are times when you must incur technical debt to meet a deadline or
implement a thin slice of a feature. Try not to be in this position, but if the situ-
ation absolutely demands it, then go ahead. But (and this is a big but) you must
track technical debt and pay it back quickly, or things go rapidly downhill.
As soon as you make the decision to compromise, write a task card or log it in
your issue-tracking system to ensure that it does not get forgotten.

If you schedule repayment of the debt in the next iteration, the cost will be
minimal. Leaving the debt unpaid will accrue interest, and that interest should
be tracked to make the cost visible. This will emphasize the effect on busi-
ness value of the project’s technical debt and enables appropriate prioritization
of the repayment. The choice of how to calculate and track the interest will
depend on the particular project, but track it you must.

Pay off technical debt as soon as possible. It would be imprudent to do otherwise.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

4 97 Things Every Programmer Should Know

Apply Functional
Programming
Principles
Edward Garson

FUNCTiONAL PROGRAMMiNG has recently enjoyed renewed interest from the
mainstream programming community. Part of the reason is because emergent
properties of the functional paradigm are well positioned to address the chal-
lenges posed by our industry’s shift toward multicore. However, while that is
certainly an important application, it is not the reason this piece admonishes
you to know thy functional programming.

Mastery of the functional programming paradigm can greatly improve the
quality of the code you write in other contexts. If you deeply understand and
apply the functional paradigm, your designs will exhibit a much higher degree
of referential transparency.

Referential transparency is a very desirable property: it implies that functions
consistently yield the same results given the same input, irrespective of where
and when they are invoked. That is, function evaluation depends less—ideally,
not at all—on the side effects of mutable state.

A leading cause of defects in imperative code is attributable to mutable vari-
ables. Everyone reading this will have investigated why some value is not as
expected in a particular situation. Visibility semantics can help to mitigate
these insidious defects, or at least to drastically narrow down their location,
but their true culprit may in fact be the providence of designs that employ
inordinate mutability.

And we certainly don’t get much help from the industry in this regard. Intro-
ductions to object orientation tacitly promote such design, because they
often show examples composed of graphs of relatively long-lived objects
that happily call mutator methods on one another, which can be dangerous.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

5Collective Wisdom from the Experts

However, with astute test-driven design, particularly when being sure to
“Mock Roles, not Objects,”* unnecessary mutability can be designed away.

The net result is a design that typically has better responsibility allocation with
more numerous, smaller functions that act on arguments passed into them,
rather than referencing mutable member variables. There will be fewer defects,
and furthermore they will often be simpler to debug, because it is easier to
locate where a rogue value is introduced in these designs than to otherwise
deduce the particular context that results in an erroneous assignment. This
adds up to a much higher degree of referential transparency, and positively
nothing will get these ideas as deeply into your bones as learning a functional
programming language, where this model of computation is the norm.

Of course, this approach is not optimal in all situations. For example, in object-
oriented systems, this style often yields better results with domain model
development (i.e., where collaborations serve to break down the complexity of
business rules) than with user-interface development.

Master the functional programming paradigm so you are able to judiciously
apply the lessons learned to other domains. Your object systems (for one) will
resonate with referential transparency goodness and be much closer to their
functional counterparts than many would have you believe. In fact, some would
even assert that, at their apex, functional programming and object orientation
are merely a reflection of each other, a form of computational yin and yang.

* http://www.jmock.org/oopsla2004.pdf

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.jmock.org/oopsla2004.pdf

6 97 Things Every Programmer Should Know

Ask, “What Would
the User Do?” (You
Are Not the User)
Giles Colborne

WE ALL TEND TO ASSUME THAT OTHER PEOPLE THiNK LiKE US. But they
don’t. Psychologists call this the false consensus bias. When people think or act
differently from us, we’re quite likely to label them (subconsciously) as defec-
tive in some way.

This bias explains why programmers have such a hard time putting themselves
in the users’ position. Users don’t think like programmers. For a start, they spend
much less time using computers. They neither know nor care how a computer
works. This means they can’t draw on any of the battery of problem-solving
techniques so familiar to programmers. They don’t recognize the patterns and
cues programmers use to work with, through, and around an interface.

The best way to find out how a user thinks is to watch one. Ask a user to
complete a task using a similar piece of software to what you’re developing.
Make sure the task is a real one: “Add up a column of numbers” is OK; “Cal-
culate your expenses for the last month” is better. Avoid tasks that are too spe-
cific, such as “Can you select these spreadsheet cells and enter a SUM formula
below?”—there’s a big clue in that question. Get the user to talk through his or
her progress. Don’t interrupt. Don’t try to help. Keep asking yourself, “Why is
he doing that?” and “Why is she not doing that?”

The first thing you’ll notice is that users do a core of things similarly. They try
to complete tasks in the same order—and they make the same mistakes in the
same places. You should design around that core behavior. This is different
from design meetings, where people tend to listen when someone says, “What
if the user wants to…?” This leads to elaborate features and confusion over
what users want. Watching users eliminates this confusion.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

7Collective Wisdom from the Experts

You’ll see users getting stuck. When you get stuck, you look around. When
users get stuck, they narrow their focus. It becomes harder for them to see
solutions elsewhere on the screen. It’s one reason why help text is a poor solu-
tion to poor user interface design. If you must have instructions or help text,
make sure to locate it right next to your problem areas. A user’s narrow focus
of attention is why tool tips are more useful than help menus.

Users tend to muddle through. They’ll find a way that works and stick with
it, no matter how convoluted. It’s better to provide one really obvious way of
doing things than two or three shortcuts.

You’ll also find that there’s a gap between what users say they want and what
they actually do. That’s worrying, as the normal way of gathering user require-
ments is to ask them. It’s why the best way to capture requirements is to watch
users. Spending an hour watching users is more informative than spending a
day guessing what they want.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

8 97 Things Every Programmer Should Know

Automate Your
Coding Standard
Filip van Laenen

YOU’VE PROBABLY BEEN THERE, TOO. At the beginning of a project, every-
body has lots of good intentions—call them “new project’s resolutions.” Quite
often, many of these resolutions are written down in documents. The ones about
code end up in the project’s coding standard. During the kick-off meeting, the
lead developer goes through the document and, in the best case, everybody
agrees that they will try to follow them. Once the project gets underway,
though, these good intentions are abandoned, one at a time. When the project
is finally delivered, the code looks like a mess, and nobody seems to know how
it came to be that way.

When did things go wrong? Probably already at the kick-off meeting. Some of
the project members didn’t pay attention. Others didn’t understand the point.
Worse, some disagreed and were already planning their coding standard
rebellion. Finally, some got the point and agreed, but when the pressure in the
project got too high, they had to let something go. Well-formatted code doesn’t
earn you points with a customer that wants more functionality. Furthermore,
following a coding standard can be quite a boring task if it isn’t automated. Just
try to indent a messy class by hand to find out for yourself.

But if it’s such a problem, why is it that we want a coding standard in the first
place? One reason to format the code in a uniform way is so that nobody can
“own” a piece of code just by formatting it in his or her private way. We may
want to prevent developers from using certain antipatterns in order to avoid
some common bugs. In all, a coding standard should make it easier to work in
the project, and maintain development speed from the beginning to the end.
It follows, then, that everybody should agree on the coding standard, too—it
does not help if one developer uses three spaces to indent code, and another
uses four.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

9Collective Wisdom from the Experts

There exists a wealth of tools that can be used to produce code quality reports
and to document and maintain the coding standard, but that isn’t the whole
solution. It should be automated and enforced where possible. Here are a few
examples:

• Make sure code formatting is part of the build process, so that everybody
runs it automatically every time they compile the code.

• Use static code analysis tools to scan the code for unwanted antipatterns.
If any are found, break the build.

• Learn to configure those tools so that you can scan for your own, project-
specific antipatterns.

• Do not only measure test coverage, but automatically check the results,
too. Again, break the build if test coverage is too low.

Try to do this for everything that you consider important. You won’t be able
to automate everything you really care about. As for the things that you can’t
automatically flag or fix, consider them a set of guidelines supplementary to
the coding standard that is automated, but accept that you and your colleagues
may not follow them as diligently.

Finally, the coding standard should be dynamic rather than static. As the proj-
ect evolves, the needs of the project change, and what may have seemed smart
in the beginning isn’t necessarily smart a few months later.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

10 97 Things Every Programmer Should Know

Beauty Is in
Simplicity
Jørn Ølmheim

THERE iS ONE qUOTE, from Plato, that I think is particularly good for all
software developers to know and keep close to their hearts:

Beauty of style and harmony and grace and good rhythm depends on simplicity.

In one sentence, this sums up the values that we as software developers should
aspire to.

There are a number of things we strive for in our code:

• Readability

• Maintainability

• Speed of development

• The elusive quality of beauty

Plato is telling us that the enabling factor for all of these qualities is simplicity.

What is beautiful code? This is potentially a very subjective question. Per-
ception of beauty depends heavily on individual background, just as much
of our perception of anything depends on our background. People educated
in the arts have a different perception of (or at least approach to) beauty
than people educated in the sciences. Arts majors tend to approach beauty in
software by comparing software to works of art, while science majors tend to
talk about symmetry and the golden ratio, trying to reduce things to formulae.
In my experience, simplicity is the foundation of most of the arguments from
both sides.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

11Collective Wisdom from the Experts

Think about source code that you have studied. If you haven’t spent time
studying other people’s code, stop reading this right now and find some open
source code to study. Seriously! I mean it! Go search the Web for some code in
your language of choice, written by some well-known, acknowledged expert.

You’re back? Good. Where were we? Ah, yes…I have found that code that
resonates with me, and that I consider beautiful, has a number of properties in
common. Chief among these is simplicity. I find that no matter how complex
the total application or system is, the individual parts have to be kept simple:
simple objects with a single responsibility containing similarly simple, focused
methods with descriptive names. Some people think the idea of having short
methods of 5–10 lines of code is extreme, and some languages make it very
hard to do, but I think that such brevity is a desirable goal nonetheless.

The bottom line is that beautiful code is simple code. Each individual part
is kept simple with simple responsibilities and simple relationships with the
other parts of the system. This is the way we can keep our systems maintain-
able over time, with clean, simple, testable code, ensuring a high speed of
development throughout the lifetime of the system.

Beauty is born of and found in simplicity.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

12 97 Things Every Programmer Should Know

Before You
Refactor
Rajith Attapattu

AT SOME POiNT, every programmer will need to refactor existing code. But
before you do so, please think about the following, as this could save you and
others a great deal of time (and pain):

• The best approach for restructuring starts by taking stock of the existing
codebase and the tests written against that code. This will help you under-
stand the strengths and weaknesses of the code as it currently stands,
so you can ensure that you retain the strong points while avoiding the
mistakes. We all think we can do better than the existing system…until
we end up with something no better—or even worse—than the previous
incarnation because we failed to learn from the existing system’s mistakes.

• Avoid the temptation to rewrite everything. It is best to reuse as much
code as possible. No matter how ugly the code is, it has already been
tested, reviewed, etc. Throwing away the old code—especially if it was
in production—means that you are throwing away months (or years) of
tested, battle-hardened code that may have had certain workarounds and
bug fixes you aren’t aware of. If you don’t take this into account, the new
code you write may end up showing the same mysterious bugs that were
fixed in the old code. This will waste a lot of time, effort, and knowledge
gained over the years.

• Many incremental changes are better than one massive change. Incremen-
tal changes allows you to gauge the impact on the system more easily
through feedback, such as from tests. It is no fun to see a hundred test
failures after you make a change. This can lead to frustration and pressure
that can in turn result in bad decisions. A couple of test failures at a time
is easier to deal with, leading to a more manageable approach.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

13Collective Wisdom from the Experts

• After each development iteration, it is important to ensure that the existing
tests pass. Add new tests if the existing tests are not sufficient to cover the
changes you made. Do not throw away the tests from the old code with-
out due consideration. On the surface, some of these tests may not appear
to be applicable to your new design, but it would be well worth the effort
to dig deep down into the reasons why this particular test was added.

• Personal preferences and ego shouldn’t get in the way. If something isn’t
broken, why fix it? That the style or the structure of the code does not
meet your personal preference is not a valid reason for restructuring.
Thinking you could do a better job than the previous programmer is not
a valid reason, either.

• New technology is an insufficient reason to refactor. One of the worst reasons
to refactor is because the current code is way behind all the cool technol-
ogy we have today, and we believe that a new language or framework can
do things a lot more elegantly. Unless a cost-benefit analysis shows that
a new language or framework will result in significant improvements in
functionality, maintainability, or productivity, it is best to leave it as it is.

• Remember that humans make mistakes. Restructuring will not always
guarantee that the new code will be better—or even as good as—the pre-
vious attempt. I have seen and been a part of several failed restructuring
attempts. It wasn’t pretty, but it was human.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

14 97 Things Every Programmer Should Know

Beware the Share
Udi Dahan

iT WAS MY FiRST PROjECT AT THE COMPANY. I’d just finished my degree
and was anxious to prove myself, staying late every day going through the
existing code. As I worked through my first feature, I took extra care to put
in place everything I had learned—commenting, logging, pulling out shared
code into libraries where possible, the works. The code review that I had felt so
ready for came as a rude awakening—reuse was frowned upon!

How could this be? Throughout college, reuse was held up as the epitome of
quality software engineering. All the articles I had read, the textbooks, the
seasoned software professionals who taught me—was it all wrong?

It turns out that I was missing something critical.

Context.

The fact that two wildly different parts of the system performed some logic
in the same way meant less than I thought. Up until I had pulled out those
libraries of shared code, these parts were not dependent on each other. Each
could evolve independently. Each could change its logic to suit the needs of the
system’s changing business environment. Those four lines of similar code were
accidental—a temporal anomaly, a coincidence. That is, until I came along.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

15Collective Wisdom from the Experts

The libraries of shared code I created tied the shoelaces of each foot to the
other. Steps by one business domain could not be made without first synchro-
nizing with the other. Maintenance costs in those independent functions used
to be negligible, but the common library required an order of magnitude more
testing.

While I’d decreased the absolute number of lines of code in the system, I had
increased the number of dependencies. The context of these dependencies is
critical—had they been localized, the sharing may have been justified and had
some positive value. When these dependencies aren’t held in check, their ten-
drils entangle the larger concerns of the system, even though the code itself
looks just fine.

These mistakes are insidious in that, at their core, they sound like a good idea.
When applied in the right context, these techniques are valuable. In the wrong
context, they increase cost rather than value. When coming into an existing
codebase with no knowledge of where the various parts will be used, I’m much
more careful these days about what is shared.

Beware the share. Check your context. Only then, proceed.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

16 97 Things Every Programmer Should Know

The Boy Scout Rule
Robert C. Martin (Uncle Bob)

THE BOY SCOUTS HAVE A RULE: “Always leave the campground cleaner than
you found it.” If you find a mess on the ground, you clean it up regardless of
who might have made it. You intentionally improve the environment for the
next group of campers. (Actually, the original form of that rule, written by
Robert Stephenson Smyth Baden-Powell, the father of scouting, was “Try and
leave this world a little better than you found it.”)

What if we followed a similar rule in our code: “Always check a module in
cleaner than when you checked it out”? Regardless of who the original author
was, what if we always made some effort, no matter how small, to improve the
module? What would be the result?

I think if we all followed that simple rule, we would see the end of the relentless
deterioration of our software systems. Instead, our systems would gradually
get better and better as they evolved. We would also see teams caring for the
system as a whole, rather than just individuals caring for their own small part.

I don’t think this rule is too much to ask. You don’t have to make every mod-
ule perfect before you check it in. You simply have to make it a little bit better
than when you checked it out. Of course, this means that any code you add
to a module must be clean. It also means that you clean up at least one other
thing before you check the module back in. You might simply improve the
name of one variable, or split one long function into two smaller functions.
You might break a circular dependency, or add an interface to decouple policy
from detail.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

17Collective Wisdom from the Experts

Frankly, this just sounds like common decency to me—like washing your
hands after you use the restroom, or putting your trash in the bin instead of
dropping it on the floor. Indeed, the act of leaving a mess in the code should be
as socially unacceptable as littering. It should be something that just isn’t done.

But it’s more than that. Caring for our own code is one thing. Caring for the
team’s code is quite another. Teams help one another and clean up after one
another. They follow the Boy Scout rule because it’s good for everyone, not just
good for themselves.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

18 97 Things Every Programmer Should Know

Check Your Code
First Before Looking
to Blame Others
Allan Kelly

DEVELOPERS—ALL OF US!—often have trouble believing our own code is bro-
ken. It is just so improbable that, for once, it must be the compiler that’s broken.

Yet, in truth, it is very (very) unusual that code is broken by a bug in the com-
piler, interpreter, OS, app server, database, memory manager, or any other
piece of system software. Yes, these bugs exist, but they are far less common
than we might like to believe.

I once had a genuine problem with a compiler bug optimizing away a loop vari-
able, but I have imagined my compiler or OS had a bug many more times. I have
wasted a lot of my time, support time, and management time in the process, only
to feel a little foolish each time it turned out to be my mistake after all.

Assuming that the tools are widely used, mature, and employed in various tech-
nology stacks, there is little reason to doubt the quality. Of course, if the tool is
an early release, or used by only a few people worldwide, or a piece of seldom
downloaded, version 0.1, open source software, there may be good reason to
suspect the software. (Equally, an alpha version of commercial software might
be suspect.)

Given how rare compiler bugs are, you are far better putting your time and
energy into finding the error in your code than into proving that the compiler
is wrong. All the usual debugging advice applies, so isolate the problem, stub
out calls, and surround it with tests; check calling conventions, shared libraries,
and version numbers; explain it to someone else; look out for stack corrup-
tion and variable type mismatches; and try the code on different machines
and different build configurations, such as debug and release.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

19Collective Wisdom from the Experts

Question your own assumptions and the assumptions of others. Tools from
different vendors might have different assumptions built into them—so too
might different tools from the same vendor.

When someone else is reporting a problem you cannot duplicate, go and see
what they are doing. They may be doing something you never thought of or
are doing something in a different order.

My personal rule is that if I have a bug I can’t pin down, and I’m starting
to think it’s the compiler, then it’s time to look for stack corruption. This is
especially true if adding trace code makes the problem move around.

Multithreaded problems are another source of bugs that turn hair gray and
induce screaming at the machine. All the recommendations to favor simple
code are multiplied when a system is multithreaded. Debugging and unit tests
cannot be relied on to find such bugs with any consistency, so simplicity of
design is paramount.

So, before you rush to blame the compiler, remember Sherlock Holmes’s
advice, “Once you eliminate the impossible, whatever remains, no matter how
improbable, must be the truth,” and opt for it over Dirk Gently’s, “Once you
eliminate the improbable, whatever remains, no matter how impossible, must
be the truth.”

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

20 97 Things Every Programmer Should Know

Choose Your
Tools with Care
Giovanni Asproni

MODERN APPLiCATiONS ARE VERY RARELY BUiLT FROM SCRATCH. They
are assembled using existing tools—components, libraries, and frameworks—
for a number of good reasons:

• Applications grow in size, complexity, and sophistication, while the time
available to develop them grows shorter. It makes better use of devel-
opers’ time and intelligence if they can concentrate on writing more
 business-domain code and less infrastructure code.

• Widely used components and frameworks are likely to have fewer bugs
than the ones developed in-house.

• There is a lot of high-quality software available on the Web for free,
which means lower development costs and greater likelihood of finding
developers with the necessary interest and expertise.

• Software production and maintenance is human-intensive work, so buying
may be cheaper than building.

However, choosing the right mix of tools for your application can be a tricky
business requiring some thought. In fact, when making a choice, you should
keep in mind a few things:

• Different tools may rely on different assumptions about their context—e.g.,
surrounding infrastructure, control model, data model, communication
protocols, etc.—which can lead to an architectural mismatch between the
application and the tools. Such a mismatch leads to hacks and workarounds
that will make the code more complex than necessary.

• Different tools have different lifecycles, and upgrading one of them may
become an extremely difficult and time-consuming task since the new func-
tionality, design changes, or even bug fixes may cause incompatibilities with

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

21Collective Wisdom from the Experts

the other tools. The greater the number of tools, the worse the problem
can become.

• Some tools require quite a bit of configuration, often by means of one or
more XML files, which can grow out of control very quickly. The applica-
tion may end up looking as if it was all written in XML plus a few odd lines
of code in some programming language. The configurational complexity
will make the application difficult to maintain and to extend.

• Vendor lock-in occurs when code that depends heavily on specific ven-
dor products ends up being constrained by them on several counts:
maintainability, performances, ability to evolve, price, etc.

• If you plan to use free software, you may discover that it’s not so free after
all. You may need to buy commercial support, which is not necessarily
going to be cheap.

• Licensing terms matter, even for free software. For example, in some
companies, it is not acceptable to use software licensed under the GNU
license terms because of its viral nature—i.e., software developed with it
must be distributed along with its source code.

My personal strategy to mitigate these problems is to start small by using only
the tools that are absolutely necessary. Usually the initial focus is on removing
the need to engage in low-level infrastructure programming (and problems),
e.g., by using some middleware instead of using raw sockets for distributed
applications. And then add more if needed. I also tend to isolate the external
tools from my business domain objects by means of interfaces and layering,
so that I can change the tool if I have to with a minimal amount of pain. A
positive side effect of this approach is that I generally end up with a smaller
application that uses fewer external tools than originally forecast.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

22 97 Things Every Programmer Should Know

Code in the
Language of
the Domain
Dan North

PiCTURE TWO CODEBASES. In one, you come across:
if (portfolioIdsByTraderId.get(trader.getId())

.containsKey(portfolio.getId())) {...}

You scratch your head, wondering what this code might be for. It seems to be
getting an ID from a trader object; using that to get a map out of a, well, map-
of-maps, apparently; and then seeing if another ID from a portfolio object
exists in the inner map. You scratch your head some more. You look for the
declaration of portfolioIdsByTraderId and discover this:

Map<int, Map<int, int>> portfolioIdsByTraderId;

Gradually, you realize it might have something to do with whether a trader has
access to a particular portfolio. And of course you will find the same lookup
fragment—or, more likely, a similar but subtly different code fragment—
whenever something cares whether a trader has access to a particular portfolio.

In the other codebase, you come across this:
if (trader.canView(portfolio)) {...}

No head scratching. You don’t need to know how a trader knows. Perhaps
there is one of these maps-of-maps tucked away somewhere inside. But that’s
the trader’s business, not yours.

Now which of those codebases would you rather be working in?

Once upon a time, we only had very basic data structures: bits and bytes and
characters (really just bytes, but we would pretend they were letters and punc-
tuation). Decimals were a bit tricky because our base-10 numbers don’t work
very well in binary, so we had several sizes of floating-point types. Then came
arrays and strings (really just different arrays). Then we had stacks and queues
and hashes and linked lists and skip lists and lots of other exciting data struc-
tures that don’t exist in the real world. “Computer science” was about spending

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

23Collective Wisdom from the Experts

lots of effort mapping the real world into our restrictive data structures. The
real gurus could even remember how they had done it.

Then we got user-defined types! OK, this isn’t news, but it does change the
game somewhat. If your domain contains concepts like traders and portfolios,
you can model them with types called, say, Trader and Portfolio. But, more
importantly than this, you can model relationships between them using domain
terms, too.

If you don’t code using domain terms, you are creating a tacit (read: secret)
understanding that this int over here means the way to identify a trader,
whereas that int over there means the way to identify a portfolio. (Best not
to get them mixed up!) And if you represent a business concept (“Some trad-
ers are not allowed to view some portfolios—it’s illegal”) with an algorithmic
snippet—say, an existence relationship in a map of keys—you aren’t doing the
audit and compliance guys any favors.

The next programmer to come along might not be in on the secret, so why
not make it explicit? Using a key as a lookup to another key that performs an
existence check is not terribly obvious. How is someone supposed to intuit
that’s where the business rules preventing conflict of interest are implemented?

Making domain concepts explicit in your code means other programmers can
gather the intent of the code much more easily than by trying to retrofit an algo-
rithm into what they understand about a domain. It also means that when the
domain model evolves—which it will, as your understanding of the domain
grows—you are in a good position to evolve the code. Coupled with good encap-
sulation, the chances are good that the rule will exist in only one place, and that
you can change it without any of the dependent code being any the wiser.

The programmer who comes along a few months later to work on the code will
thank you. The programmer who comes along a few months later might be you.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

24 97 Things Every Programmer Should Know

Code Is Design
Ryan Brush

iMAGiNE WAKiNG UP TOMORROW and learning that the construction indus-
try has made the breakthrough of the century. Millions of cheap, incredibly
fast robots can fabricate materials out of thin air, have a near-zero power cost,
and can repair themselves. And it gets better: given an unambiguous blueprint
for a construction project, the robots can build it without human intervention,
all at negligible cost.

One can imagine the impact on the construction industry, but what would
happen upstream? How would the behavior of architects and designers change
if construction costs were negligible? Today, physical and computer models are
built and rigorously tested before investing in construction. Would we bother
if the construction was essentially free? If a design collapses, no big deal—just
find out what went wrong and have our magical robots build another one.
There are further implications. With models obsolete, unfinished designs
evolve by repeatedly building and improving upon an approximation of the
end goal. A casual observer may have trouble distinguishing an unfinished
design from a finished product.

Our ability to predict timelines will fade away. Construction costs are more
easily calculated than design costs—we know the approximate cost of install-
ing a girder, and how many girders we need. As predictable tasks shrink toward
zero, the less predictable design time starts to dominate. Results are produced
more quickly, but reliable timelines slip away.

Of course, the pressures of a competitive economy still apply. With construc-
tion costs eliminated, a company that can quickly complete a design gains an

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

25Collective Wisdom from the Experts

edge in the market. Getting design done fast becomes the central push of engi-
neering firms. Inevitably, someone not deeply familiar with the design will see
an unvalidated version, see the market advantage of releasing early, and say,
“This looks good enough.”

Some life-or-death projects will be more diligent, but in many cases, consum-
ers learn to suffer through the incomplete design. Companies can always send
out our magic robots to “patch” the broken buildings and vehicles they sell.
All of this points to a startlingly counterintuitive conclusion: our sole premise
was a dramatic reduction in construction costs, with the result that quality got
worse.

It shouldn’t surprise us that the preceding story has played out in software.
If we accept that code is design—a creative process rather than a mechanical
one—the software crisis is explained. We now have a design crisis: the demand
for quality, validated designs exceeds our capacity to create them. The pressure
to use incomplete design is strong.

Fortunately, this model also offers clues to how we can get better. Physical
simulations equate to automated testing; software design isn’t complete until
it is validated with a brutal battery of tests. To make such tests more effective,
we are finding ways to rein in the huge state space of large systems. Improved
languages and design practices give us hope. Finally, there is one inescapable
fact: great designs are produced by great designers dedicating themselves to
the mastery of their craft. Code is no different.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

26 97 Things Every Programmer Should Know

Code Layout
Matters
Steve Freeman

AN iNFEASiBLE NUMBER OF YEARS AGO, I worked on a Cobol system where
staff members weren’t allowed to change the indentation unless they already
had a reason to change the code, because someone once broke something by
letting a line slip into one of the special columns at the beginning of a line. This
applied even if the layout was misleading, which it sometimes was, so we had
to read the code very carefully because we couldn’t trust it. The policy must
have cost a fortune in programmer drag.

There’s research suggesting that we all spend much more of our programming
time navigating and reading code—finding where to make the change—than
actually typing, so that’s what we want to optimize for. Here are three such
optimizations:

Easy to scan
People are really good at visual pattern matching (a leftover trait from the
time when we had to spot lions on the savannah), so I can help myself
by making everything that isn’t directly relevant to the domain—all the
“accidental complexity” that comes with most commercial languages—
fade into the background by standardizing it. If code that behaves the
same looks the same, then my perceptual system will help me pick out
the differences. That’s why I also observe conventions about how to lay
out the parts of a class within a compilation unit: constants, fields, public
methods, private methods.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

27Collective Wisdom from the Experts

Expressive layout
We’ve all learned to take the time to find the right names so that our code
expresses as clearly as possible what it does, rather than just listing the
steps—right? The code’s layout is part of this expressiveness, too. A first cut
is to have the team agree on an automatic formatter for the basics, and then
I might make adjustments by hand while I’m coding. Unless there’s active
dissension, a team will quickly converge on a common “hand-finished”
style. A formatter cannot understand my intentions (I should know, I once
wrote one), and it’s more important to me that the line breaks and groupings
reflect the intention of the code, not just the syntax of the language. (Kevin
McGuire freed me from my bondage to automatic code formatters.)

Compact format
The more I can get on a screen, the more I can see without breaking con-
text by scrolling or switching files, which means I can keep less state in my
head. Long procedure comments and lots of whitespace made sense for
eight-character names and line printers, but now I live in an IDE that does
syntax coloring and cross linking. Pixels are my limiting factor, so I want
every one to contribute to my understanding of the code. I want the layout
to help me understand the code, but no more than that.

A nonprogrammer friend once remarked that code looks like poetry. I get
that feeling from really good code—that everything in the text has a purpose,
and that it’s there to help me understand the idea. Unfortunately, writing code
doesn’t have the same romantic image as writing poetry.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

28 97 Things Every Programmer Should Know

Code Reviews
Mattias Karlsson

YOU SHOULD DO CODE REViEWS. Why? Because they increase code quality
and reduce defect rate. But not necessarily for the reasons you might think.

Because they may previously have had some bad experiences with code
reviews, many programmers tend to dislike them. I have seen organizations
that require that all code pass a formal review before being deployed to pro-
duction. Often, it is the architect or a lead developer doing this review, a
practice that can be described as architect reviews everything. This is stated in
the company’s software development process manual, so the programmers
must comply.

There may be some organizations that need such a rigid and formal process,
but most do not. In most organizations, such an approach is counterproductive.
Reviewees can feel like they are being judged by a parole board. Reviewers
need both the time to read the code and the time to keep up to date with all the
details of the system; they can rapidly become the bottleneck in this process,
and the process soon degenerates.

Instead of simply correcting mistakes in code, the purpose of code reviews
should be to share knowledge and establish common coding guidelines. Shar-
ing your code with other programmers enables collective code ownership.
Let a random team member walk through the code with the rest of the team.
Instead of looking for errors, you should review the code by trying to learn
and understand it.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

29Collective Wisdom from the Experts

Be gentle during code reviews. Ensure that comments are constructive, not
caustic. Introduce different roles for the review meeting to avoid having orga-
nizational seniority among team members affect the code review. Examples
of roles could include having one reviewer focus on documentation, another
on exceptions, and a third to look at the functionality. This approach helps to
spread the review burden across the team members.

Have a regular code review day each week. Spend a couple of hours in a review
meeting. Rotate the reviewee every meeting in a simple round-robin pattern.
Remember to switch roles among team members every review meeting, too.
Involve newbies in code reviews. They may be inexperienced, but their fresh
university knowledge can provide a different perspective. Involve experts for
their experience and knowledge. They will identify error-prone code faster
and with more accuracy. Code reviews will flow more easily if the team has
coding conventions that are checked by tools. That way, code formatting will
never be discussed during the code review meeting.

Making code reviews fun is perhaps the most important contributor to suc-
cess. Reviews are about the people reviewing. If the review meeting is painful
or dull, it will be hard to motivate anyone. Make it an informal code review
whose principal purpose is to share knowledge among team members. Leave
sarcastic comments outside, and bring a cake or brown-bag lunch instead.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

30 97 Things Every Programmer Should Know

Coding with
Reason
Yechiel Kimchi

TRYiNG TO REASON about software correctness by hand results in a formal
proof that is longer than the code, and more likely to contain errors. Auto-
mated tools are preferable but not always possible. What follows describes a
middle path: reasoning semiformally about correctness.

The underlying approach is to divide all the code under consideration into
short sections—from a single line, such as a function call, to blocks of less
than 10 lines—and argue about their correctness. The arguments need only be
strong enough to convince your devil’s advocate peer programmer.

A section should be chosen so that at each endpoint, the state of the program
(namely, the program counter and the values of all “living” objects) satis-
fies an easily described property, and so that the functionality of that section
(state transformation) is easy to describe as a single task; these guidelines
will make reasoning simpler. Such endpoint properties generalize concepts
like preconditions and postconditions for functions, and invariants for loops
and classes (with respect to their instances). Striving for sections to be as inde-
pendent of one another as possible simplifies reasoning and is indispensable
when these sections are to be modified.

Many of the coding practices that are well known (although perhaps less well
followed) and considered “good” make reasoning easier. Hence, just by intend-
ing to reason about your code, you already start moving toward a better style
and structure. Unsurprisingly, most of these practices can be checked by static
code analyzers:

• Avoid using goto statements, as they make remote sections highly
interdependent.

• Avoid using modifiable global variables, as they make all sections that use
them dependent.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

31Collective Wisdom from the Experts

• Each variable should have the smallest possible scope. For example, a
local object can be declared right before its first usage.

• Make objects immutable whenever relevant.

• Make the code readable by using spacing, both horizontal and vertical—e.g.,
aligning related structures and using an empty line to separate two sections.

• Make the code self-documenting by choosing descriptive (but relatively
short) names for objects, types, functions, etc.

• If you need a nested section, make it a function.

• Make your functions short and focused on a single task. The old 24-line
limit still applies. Although screen size and resolution have changed,
nothing has changed in human cognition since the 1960s.

• Functions should have few parameters (four is a good upper bound). This
does not restrict the data communicated to functions: grouping related
parameters into a single object localizes object invariants, which simplifies
reasoning with respect to their coherence and consistency.

• More generally, each unit of code, from a block to a library, should have
a narrow interface. Less communication reduces the reasoning required.
This means that getters that return internal state are a liability—don’t ask
an object for information to work with. Instead, ask the object to do the
work with the information it already has. In other words, encapsulation is
all—and only—about narrow interfaces.

• In order to preserve class invariants, usage of setters should be discouraged.
Setters tend to allow invariants that govern an object’s state to be broken.

As well as reasoning about its correctness, arguing about your code helps you
better understand it. Communicate the insights you gain for everyone’s benefit.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

32 97 Things Every Programmer Should Know

A Comment on
Comments
Cal Evans

iN MY FiRST PROGRAMMiNG CLASS iN COLLEGE, my teacher handed out
two BASIC coding sheets. On the board, the assignment read, “Write a pro-
gram to input and average 10 bowling scores.” Then the teacher left the room.
How hard could this be? I don’t remember my final solution, but I’m sure it had
a FOR/NEXT loop in it and couldn’t have been more than 15 lines long in total.
Coding sheets—for you kids reading this, yes, we used to write code out long-
hand before actually entering it into a computer—allowed for around 70 lines of
code each. I was very confused as to why the teacher would have given us two
sheets. Since my handwriting has always been atrocious, I used the second one
to recopy my code very neatly, hoping to get a couple of extra points for style.

Much to my surprise, when I received the assignment back at the start of the
next class, I received a barely passing grade. (It was to be an omen to me for the
rest of my time in college.) Scrawled across the top of my neatly copied code
was “No comments?”

It was not enough that the teacher and I both knew what the program was sup-
posed to do. Part of the point of the assignment was to teach me that my code
should explain itself to the next programmer coming behind me. It’s a lesson
I’ve not forgotten.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

33Collective Wisdom from the Experts

Comments are not evil. They are as necessary to programming as basic branch-
ing or looping constructs. Most modern languages have a tool akin to javadoc
that will parse properly formatted comments to automatically build an API
document. This is a very good start, but not nearly enough. Inside your code
should be explanations about what the code is supposed to be doing. Coding
by the old adage, “If it was hard to write, it should be hard to read,” does a
disservice to your client, your employer, your colleagues, and your future self.

On the other hand, you can go too far in your commenting. Make sure that
your comments clarify your code but do not obscure it. Sprinkle your code
with relevant comments explaining what the code is supposed to accomplish.
Your header comments should give any programmer enough information to
use your code without having to read it, while your inline comments should
assist the next developer in fixing or extending it.

At one job, I disagreed with a design decision made by those above me. Feel-
ing rather snarky, as young programmers often do, I pasted the text of the email
instructing me to use their design into the header comment block of the file. It
turned out that managers at this particular shop actually reviewed the code when
it was committed. It was my first introduction to the term career-limiting move.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

34 97 Things Every Programmer Should Know

Comment Only
What the Code
Cannot Say
Kevlin Henney

THE DiFFERENCE BETWEEN THEORY AND PRACTiCE is greater in practice
than it is in theory—an observation that certainly applies to comments. In
theory, the general idea of commenting code sounds like a worthy one: offer
the reader detail, an explanation of what’s going on. What could be more help-
ful than being helpful? In practice, however, comments often become a blight.
As with any other form of writing, there is a skill to writing good comments.
Much of the skill is in knowing when not to write them.

When code is ill-formed, compilers, interpreters, and other tools will be sure
to object. If the code is in some way functionally incorrect, reviews, static
analysis, tests, and day-to-day use in a production environment will flush
most bugs out. But what about comments? In The Elements of Programming
Style (Computing McGraw-Hill), Kernighan and Plauger note that “a com-
ment is of zero (or negative) value if it is wrong.” And yet such comments
often litter and survive in a codebase in a way that coding errors never could.
They provide a constant source of distraction and misinformation, a subtle
but constant drag on a programmer’s thinking.

What of comments that are not technically wrong, but add no value to the
code? Such comments are noise. Comments that parrot the code offer noth-
ing extra to the reader—stating something once in code and again in natural
language does not make it any truer or more real. Commented-out code is not
executable code, so it has no useful effect for either reader or runtime. It also
becomes stale very quickly. Version-related comments and commented-out
code try to address questions of versioning and history. These questions have
already been answered (far more effectively) by version control tools.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

35Collective Wisdom from the Experts

A prevalence of noisy comments and incorrect comments in a codebase
encourages programmers to ignore all comments, either by skipping past
them or by taking active measures to hide them. Programmers are resourceful
and will route around anything perceived to be damage: folding comments
up; switching coloring scheme so that comments and the background are the
same color; scripting to filter out comments. To save a codebase from such
misapplications of programmer ingenuity, and to reduce the risk of overlook-
ing any comments of genuine value, comments should be treated as though
they were code. Each comment should add some value for the reader, otherwise
it is waste that should be removed or rewritten.

What then qualifies as value? Comments should say something code does not
and cannot say. A comment explaining what a piece of code should already
say is an invitation to change code structure or coding conventions so the code
speaks for itself. Instead of compensating for poor method or class names,
rename them. Instead of commenting sections in long functions, extract
smaller functions whose names capture the former sections’ intent. Try to
express as much as possible through code. Any shortfall between what you
can express in code and what you would like to express in total becomes a
plausible candidate for a useful comment. Comment what the code cannot say,
not simply what it does not say.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

36 97 Things Every Programmer Should Know

Continuous
Learning
Clint Shank

WE LiVE iN iNTERESTiNG TiMES. As development gets distributed across the
globe, you learn there are lots of people capable of doing your job. You need to
keep learning to stay marketable. Otherwise you’ll become a dinosaur, stuck
in the same job until, one day, you’ll no longer be needed or your job gets out-
sourced to some cheaper resource.

So what do you do about it? Some employers are generous enough to provide
training to broaden your skill set. Others may not be able to spare the time or
money for any training at all. To play it safe, you need to take responsibility for
your own education.

Here’s a list of ways to keep you learning. Many of these can be found on the
Internet for free:

• Read books, magazines, blogs, Twitter feeds, and websites. If you want
to go deeper into a subject, consider joining a mailing list or newsgroup.

• If you really want to get immersed in a technology, get hands on—write
some code.

• Always try to work with a mentor, as being the top guy can hinder your
education. Although you can learn something from anybody, you can
learn a whole lot more from someone smarter or more experienced than
you. If you can’t find a mentor, consider moving on.

• Use virtual mentors. Find authors and developers on the Web who you
really like and read everything they write. Subscribe to their blogs.

• Get to know the frameworks and libraries you use. Knowing how
something works makes you know how to use it better. If they’re open
source, you’re really in luck. Use the debugger to step through the code
to see what’s going on under the hood. You’ll get to see code written and
reviewed by some really smart people.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

37Collective Wisdom from the Experts

• Whenever you make a mistake, fix a bug, or run into a problem, try to
really understand what happened. It’s likely that someone else ran into
the same problem and posted it on the Web. Google is really useful here.

• A good way to learn something is to teach or speak about it. When people
are going to listen to you and ask you questions, you’ll be highly motivated
to learn. Try a lunch-’n’-learn at work, a user group, or a local conference.

• Join or start a study group (à la patterns community) or a local user group
for a language, technology, or discipline you are interested in.

• Go to conferences. And if you can’t go, many conferences put their talks
online for free.

• Long commute? Listen to podcasts.

• Ever run a static analysis tool over the codebase or look at the warnings
in your IDE? Understand what they’re reporting and why.

• Follow the advice of the Pragmatic Programmers* and learn a new lan-
guage every year. At least learn a new technology or tool. Branching out
gives you new ideas you can use in your current technology stack.

• Not everything you learn has to be about technology. Learn the domain
you’re working in so you can better understand the requirements and
help solve the business problem. Learning how to be more productive—
how to work better—is another good option.

• Go back to school.

It would be nice to have the capability that Neo had in The Matrix, and simply
download the information we need into our brains. But we don’t, so it will take
a time commitment. You don’t have to spend every waking hour learning. A
little time—say, each week—is better than nothing. There is (or should be) a life
outside of work.

Technology changes fast. Don’t get left behind.

* http://www.pragprog.com/titles/tpp/the-pragmatic-programmer

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.pragprog.com/titles/tpp/the-pragmatic-programmer

38 97 Things Every Programmer Should Know

Convenience Is
Not an -ility
Gregor Hohpe

MUCH HAS BEEN SAiD about the importance and challenges of designing
good APIs. It’s difficult to get right the first time and it’s even more difficult
to change later—sort of like raising children. Most experienced programmers
have learned that a good API follows a consistent level of abstraction, exhib-
its consistency and symmetry, and forms the vocabulary for an expressive
language. Alas, being aware of the guiding principles does not automatically
translate into appropriate behavior. Eating sweets is bad for you.

Instead of preaching from on high, I want to pick on a particular API design
“strategy,” one that I encounter time and again: the argument of convenience.
It typically begins with one of the following “insights”:

• I don’t want other classes to have to make two separate calls to do this
one thing.

• Why should I make another method if it’s almost the same as this method?
I’ll just add a simple switch.

• See, it’s very easy: if the second string parameter ends with “.txt”, the
method automatically assumes that the first parameter is a filename, so I
really don’t need two methods.

While well intended, such arguments are prone to decrease the readability of
code using the API. A method invocation like:

parser.processNodes(text, false);

is virtually meaningless without knowing the implementation or at least consult-
ing the documentation. This method was likely designed for the convenience
of the implementer as opposed to the convenience of the caller—“I don’t want

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

39Collective Wisdom from the Experts

the caller to have to make two separate calls” translated into “I didn’t want to
code up two separate methods.” There’s nothing fundamentally wrong with
convenience if it’s intended to be the antidote to tediousness, clunkiness, or
awkwardness. However, if we think a bit more carefully about it, the antidote
to those symptoms is efficiency, consistency, and elegance, not necessarily
convenience. APIs are supposed to hide underlying complexity, so we can real-
istically expect good API design to require some effort. A single large method
could certainly be more convenient to write than a well-thought-out set of
operations, but would it be easier to use?

The metaphor of API as a language can guide us toward better design decisions
in these situations. An API should provide an expressive language, which gives
the next layer above sufficient vocabulary to ask and answer useful questions.
This does not imply that it should provide exactly one method, or verb, for each
question that may be worth asking. A diverse vocabulary allows us to express
subtleties in meaning. For example, we prefer to say run instead of walk(true),
even though it could be viewed as essentially the same operation, just executed
at different speeds. A consistent and well-thought-out API vocabulary makes
for expressive and easy-to-understand code in the next layer up. More impor-
tantly, a composable vocabulary allows other programmers to use the API in
ways you may not have anticipated—a great convenience indeed for the users
of the API! Next time you are tempted to lump a few things together into one
API method, remember that the English language does not have one word
for MakeUpYourRoomBeQuietAndDoYourHomeWork, even though it would be really
convenient for such a frequently requested operation.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

40 97 Things Every Programmer Should Know

Deploy Early
and Often
Steve Berczuk

DEBUGGiNG THE DEPLOYMENT AND iNSTALLATiON PROCESSES is often
put off until close to the end of a project. In some projects, writing installation
tools is delegated to a release engineer who takes on the task as a “necessary
evil.” Reviews and demonstrations are done from a hand-crafted environment
to ensure that everything works. The result is that the team gets no experience
with the deployment process or the deployed environment until it may be too
late to make changes.

The installation/deployment process is the first thing that the customer sees,
and a simple one is the first step to having a reliable (or, at least, easy to debug)
production environment. The deployed software is what the customer will
use. By not ensuring that the deployment sets up the application correctly,
you’ll raise questions with your customers before they get to use your software
thoroughly.

Starting your project with an installation process will give you time to evolve
the process as you move through the product development cycle, and the
chance to make changes to the application code to make the installation easier.
Running and testing the installation process on a clean environment periodi-
cally also provides a check that you have not made assumptions in the code
that rely on the development or test environments.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

41Collective Wisdom from the Experts

Putting deployment last means that the deployment process may need to be
more complicated to work around assumptions in the code. What seemed a
great idea in an IDE, where you have full control over an environment, might
make for a much more complicated deployment process. It is better to know
all the trade-offs sooner rather than later.

While “being able to deploy” doesn’t seem to have a lot of business value
early on as compared to seeing an application run on a developer’s laptop,
the simple truth is that until you can demonstrate you application on the tar-
get environment, there is a lot of work to do before you can deliver business
value. If your rationale for putting off a deployment process is that it is trivial,
then do it anyway since it is low cost. If it’s too complicated, or if there are too
many uncertainties, do what you would do with application code: experiment,
evaluate, and refactor the deployment process as you go.

The installation/deployment process is essential to the productivity of your
customers or your professional services team, so you should be testing and
refactoring this process as you go. We test and refactor the source code
throughout a project. The deployment deserves no less.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

42 97 Things Every Programmer Should Know

Distinguish Business
Exceptions from
Technical
Dan Bergh Johnsson

THERE ARE BASiCALLY TWO REASONS that things go wrong at runtime:
technical problems that prevent us from using the application and business
logic that prevents us from misusing the application. Most modern languages,
such as LISP, Java, Smalltalk, and C#, use exceptions to signal both these situa-
tions. However, the two situations are so different that they should be carefully
held apart. It is a potential source of confusion to represent them both using
the same exception hierarchy, not to mention the same exception class.

An unresolvable technical problem can occur when there is a programming
error. For example, if you try to access element 83 from an array of size 17,
then the program is clearly off track, and some exception should result. The
subtler version is calling some library code with inappropriate arguments,
causing the same situation on the inside of the library.

It would be a mistake to attempt to resolve these situations you caused your-
self. Instead, we let the exception bubble up to the highest architectural level
and let some general exception-handling mechanism do what it can to ensure
that the system is in a safe state, such as rolling back a transaction, logging and
alerting administration, and reporting back (politely) to the user.

A variant of this situation is when you are in the “library situation” and a caller
has broken the contract of your method, e.g., passing a totally bizarre argu-
ment or not having a dependent object set up properly. This is on a par with
accessing the 83rd element from 17: the caller should have checked; not doing
so is a programmer error on the client side. The proper response is to throw a
technical exception.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

43Collective Wisdom from the Experts

A different, but still technical, situation is when the program cannot proceed
because of a problem in the execution environment, such as an unresponsive
database. In this situation, you must assume that the infrastructure did what it
could to resolve the issue—repairing connections and retrying a reasonable num-
ber of times—and failed. Even if the cause is different, the situation for the calling
code is similar: there is little it can do about it. So, we signal the situation through
an exception that we let bubble up to the general exception-handling mechanism.

In contrast to these, we have the situation where you cannot complete the call
for a domain-logical reason. In this case, we have encountered a situation that
is an exception, i.e., unusual and undesirable, but not bizarre or programmati-
cally in error (for example, if I try to withdraw money from an account with
insufficient funds). In other words, this kind of situation is a part of the con-
tract, and throwing an exception is just an alternative return path that is part
of the model and that the client should be aware of and be prepared to handle.
For these situations, it is appropriate to create a specific exception or a separate
exception hierarchy so that the client can handle the situation on its own terms.

Mixing technical exceptions and business exceptions in the same hierarchy
blurs the distinction and confuses the caller about what the method contract
is, what conditions it is required to ensure before calling, and what situations
it is supposed to handle. Separating the cases gives clarity and increases
the chances that technical exceptions will be handled by some application
framework, while the business domain exceptions actually are considered
and handled by the client code.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

44 97 Things Every Programmer Should Know

Do Lots of
Deliberate Practice
Jon Jagger

DELiBERATE PRACTiCE iS NOT SiMPLY PERFORMiNG A TASK. If you ask
yourself, “Why am I performing this task?” and your answer is, “To complete
the task,” then you’re not doing deliberate practice.

You do deliberate practice to improve your ability to perform a task. It’s about
skill and technique. Deliberate practice means repetition. It means performing
the task with the aim of increasing your mastery of one or more aspects of the
task. It means repeating the repetition. Slowly, over and over again, until you
achieve your desired level of mastery. You do deliberate practice to master the
task, not to complete the task.

The principal aim of paid development is to finish a product, whereas the
principal aim of deliberate practice is to improve your performance. They are
not the same. Ask yourself, how much of your time do you spend developing
someone else’s product? How much developing yourself?

How much deliberate practice does it take to acquire expertise?

• Peter Norvig writes* that “it may be that 10,000 hours…is the magic
number.”

• In Leading Lean Software Development (Addison-Wesley Professional),
Mary Poppendieck notes that “it takes elite performers a minimum of
10,000 hours of deliberate focused practice to become experts.”

* http://norvig.com/21-days.html

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://norvig.com/21-days.html

45Collective Wisdom from the Experts

The expertise arrives gradually over time—not all at once in the 10,000th
hour! Nevertheless, 10,000 hours is a lot: about 20 hours per week for 10 years.
Given this level of commitment, you might be worrying that you’re just not
expert material. You are. Greatness is largely a matter of conscious choice.
Your choice. Research over the last two decades has shown that the main fac-
tor in acquiring expertise is time spent doing deliberate practice. Innate ability
is not the main factor. According to Mary Poppendieck:

There is broad consensus among researchers of expert performance that inborn
talent does not account for much more than a threshold; you have to have a mini-
mum amount of natural ability to get started in a sport or profession. After that,
the people who excel are the ones who work the hardest.

There is little point to deliberately practicing something you are already an
expert at. Deliberate practice means practicing something you are not good at.
Peter Norvig explains:

The key [to developing expertise] is deliberative practice: not just doing it again
and again, but challenging yourself with a task that is just beyond your current abil-
ity, trying it, analyzing your performance while and after doing it, and correcting
any mistakes.

And Mary Poppendieck writes:

Deliberate practice does not mean doing what you are good at; it means challeng-
ing yourself, doing what you are not good at. So it’s not necessarily fun.

Deliberate practice is about learning—learning that changes you, learning that
changes your behavior. Good luck.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

46 97 Things Every Programmer Should Know

Domain-Specific
Languages
Michael Hunger

WHENEVER YOU LiSTEN TO A DiSCUSSiON BY ExPERTS in any domain, be
it chess players, kindergarten teachers, or insurance agents, you’ll notice that
their vocabulary is quite different from everyday language. That’s part of what
domain-specific languages (DSLs) are about: a specific domain has a specialized
vocabulary to describe the things that are particular to that domain.

In the world of software, DSLs are about executable expressions in a language
specific to a domain, employing a limited vocabulary and grammar that is
readable, understandable, and—hopefully—writable by domain experts. DSLs
targeted at software developers or scientists have been around for a long time.
The Unix “little languages” found in configuration files and the languages cre-
ated with the power of LISP macros are some of the older examples.

DSLs are commonly classified as either internal or external:

Internal DSLs
Are written in a general-purpose programming language whose syntax
has been bent to look much more like natural language. This is easier for
languages that offer more syntactic sugar and formatting possibilities (e.g.,
Ruby and Scala) than it is for others that do not (e.g., Java). Most internal
DSLs wrap existing APIs, libraries, or business code and provide a wrap-
per for less mind-bending access to the functionality. They are directly
executable by just running them. Depending on the implementation and
the domain, they are used to build data structures, define dependencies,
run processes or tasks, communicate with other systems, or validate user
input. The syntax of an internal DSL is constrained by the host language.
There are many patterns—e.g., expression builder, method chaining, and
annotation—that can help you to bend the host language to your DSL. If
the host language doesn’t require recompilation, an internal DSL can be
developed quite quickly working side by side with a domain expert.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

47Collective Wisdom from the Experts

External DSLs
Are textual or graphical expressions of the language—although textual DSLs
tend to be more common than graphical ones. Textual expressions can be
processed by a toolchain that includes lexer, parser, model transformer, gen-
erators, and any other type of post-processing. External DSLs are mostly read
into internal models that form the basis for further processing. It is helpful to
define a grammar (e.g., in EBNF). A grammar provides the starting point for
generating parts of the toolchain (e.g., editor, visualizer, parser generator).
For simple DSLs, a handmade parser may be sufficient—using, for instance,
regular expressions. Custom parsers can become unwieldy if too much is
asked of them, so it makes sense to look at tools designed specifically for
working with language grammars and DSLs—e.g., openArchitectureWare,
ANTLR, SableCC, AndroMDA. Defining external DSLs as XML dialects
is also quite common, although readability is often an issue—especially for
nontechnical readers.

You must always take the target audience of your DSL into account. Are they
developers, managers, business customers, or end users? You have to adapt the
technical level of the language, the available tools, syntax help (e.g., IntelliSense),
early validation, visualization, and representation to the intended audience.
By hiding technical details, DSLs can empower users by giving them the abil-
ity to adapt systems to their needs without requiring the help of developers. It
can also speed up development because of the potential distribution of work
after the initial language framework is in place. The language can be evolved
gradually. There are also different migration paths for existing expressions and
grammars available.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

48 97 Things Every Programmer Should Know

Don’t Be Afraid
to Break Things
Mike Lewis

EVERYONE WiTH iNDUSTRY ExPERiENCE has undoubtedly worked on a
project where the codebase was precarious at best. The system is poorly factored,
and changing one thing always manages to break another unrelated feature.
Whenever a module is added, the coder’s goal is to change as little as possible,
and hold his breath during every release. This is the software equivalent of
playing Jenga with I-beams in a skyscraper, and is bound for disaster.

The reason that making changes is so nerve-racking is because the system is
sick. It needs a doctor, otherwise its condition will only worsen. You already
know what is wrong with your system, but you are afraid of breaking the eggs
to make your omelet. A skilled surgeon knows that cuts have to be made in
order to operate, but she also knows that the cuts are temporary and will heal.
The end result of the operation is worth the initial pain, and the patient should
heal to a better state than he was in before the surgery.

Don’t be afraid of your code. Who cares if something gets temporarily broken
while you move things around? A paralyzing fear of change is what got your
project into this state to begin with. Investing the time to refactor will pay for
itself several times over the lifecycle of your project. An added benefit is that
your team’s experience dealing with the sick system makes you all experts
in knowing how it should work. Apply this knowledge rather than resent it.
Working on a system you hate is not how anybody should have to spend his time.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

49Collective Wisdom from the Experts

Redefine internal interfaces, restructure modules, refactor copy–pasted code,
and simplify your design by reducing dependencies. You can significantly
reduce code complexity by eliminating corner cases, which often result from
improperly coupled features. Slowly transition the old structure into the new
one, testing along the way. Trying to accomplish a large refactor in “one big
shebang” will cause enough problems to make you consider abandoning the
whole effort midway through.

Be the surgeon who isn’t afraid to cut out the sick parts to make room for heal-
ing. The attitude is contagious and will inspire others to start working on those
cleanup projects they’ve been putting off. Keep a “hygiene” list of tasks that the
team feels are worthwhile for the general good of the project. Convince man-
agement that even though these tasks may not produce visible results, they
will reduce expenses and expedite future releases. Never stop caring about the
general “health” of the code.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

50 97 Things Every Programmer Should Know

Don’t Be Cute with
Your Test Data
Rod Begbie

It was getting late. I was throwing in some placeholder data to test the page
layout I’d been working on.

I appropriated the members of The Clash for the names of users. Company
names? Song titles by the Sex Pistols would do. Now I needed some stock ticker
symbols—just some four-letter words in capital letters.

I used those four-letter words.

It seemed harmless. Just something to amuse myself, and maybe the other
developers the next day before I wired up the real data source.

The following morning, a project manager took some screenshots for a
presentation.

PROGRAMMiNG HiSTORY is littered with these kinds of war stories. Things that
developers and designers did “that no one else would see,” which unexpectedly
became visible.

The leak type can vary but, when it happens, it can be deadly to the person,
team, or company responsible. Examples include:

• During a status meeting, a client clicks on a button that is as yet unimple-
mented. He is told, “Don’t click that again, you moron.”

• A programmer maintaining a legacy system has been told to add an error
dialog, and decides to use the output of existing behind-the-scenes log-
ging to power it. Users are suddenly faced with messages such as “Holy
database commit failure, Batman!” when something breaks.

• Someone mixes up the test and live administration interfaces, and does
some “funny” data entry. Customers spot a $1M “Bill Gates–shaped
personal massager” on sale in your online store.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

51Collective Wisdom from the Experts

To appropriate the old saying that “a lie can travel halfway around the world
while the truth is putting on its shoes,” in this day and age, a screw-up can be
Dugg, Twittered, and Flibflarbed before anyone in the developer’s time zone is
awake to do anything about it.

Even your source code isn’t necessarily free of scrutiny. In 2004, when a tarball
of the Windows 2000 source code made its way onto file-sharing networks,
some folks merrily grepped through it for profanity, insults, and other funny
content.* (The comment // TERRIBLE HORRIBLE NO GOOD VERY BAD HACK has, I
will admit, become appropriated by me from time to time since!)

In summary, when writing any text in your code—whether comments, log-
ging, dialogs, or test data—always ask yourself how it will look if it becomes
public. It will save some red faces all around.

* http://www.kuro5hin.org/story/2004/2/15/71552/7795

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.kuro5hin.org/story/2004/2/15/71552/7795

52 97 Things Every Programmer Should Know

Don’t Ignore
That Error!
Pete Goodliffe

I was walking down the street one evening to meet some friends in a bar. We
hadn’t shared a beer in some time, and I was looking forward to seeing them
again. In my haste, I wasn’t looking where I was going. I tripped over the edge
of a curb and ended up flat on my face. Well, it serves me right for not paying
attention, I guess.

It hurt my leg, but I was in a hurry to meet my friends. So, I pulled myself up
and carried on. As I walked farther, the pain was getting worse. Although I’d
initially dismissed it as shock, I rapidly realized there was something wrong.

But I hurried on to the bar regardless. I was in agony by the time I arrived. I
didn’t have a great night out, because I was terribly distracted. In the morning,
I went to the doctor and found out I’d fractured my shin bone. Had I stopped
when I felt the pain, I would’ve prevented a lot of extra damage that I caused
by walking on it. Probably the worst morning after of my life.

TOO MANY PROGRAMMERS write code like my disastrous night out.

Error, what error? It won’t be serious. Honestly. I can ignore it. This is not a win-
ning strategy for solid code. In fact, it’s just plain laziness. (The wrong sort.)
No matter how unlikely you think an error is in your code, you should always
check for it, and always handle it. Every time. You’re not saving time if you
don’t; you’re storing up potential problems for the future.

We report errors in our code in a number of ways, including:

• Return codes can be used as the resulting value of a function to mean
“it didn’t work.” Error return codes are far too easy to ignore. You won’t
see anything in the code to highlight the problem. Indeed, it’s become
normal practice to ignore some standard C functions’ return values. How
often do you check the return value from printf?

• errno is a curious C aberration, a separate global variable set to sig-
nal error. It’s easy to ignore, hard to use, and leads to all sorts of nasty
 problems—for example, what happens when you have multiple threads

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

53Collective Wisdom from the Experts

calling the same function? Some platforms insulate you from pain here;
others do not.

• Exceptions are a more structured language-supported way of signaling
and handling errors. And you can’t possibly ignore them. Or can you? I’ve
seen lots of code like this:

try {

 // ...do something...

}

catch (...) {} // ignore errors

The saving grace of this awful construct is that it highlights the fact that
you’re doing something morally dubious.

If you ignore an error, turn a blind eye, and pretend that nothing has gone wrong,
you run great risks. Just as my leg ended up in a worse state than if I’d stopped
walking on it immediately, plowing on regardless of the red flags can lead to very
complex failures. Deal with problems at the earliest opportunity. Keep a short
account.

Not handling errors leads to:

• Brittle code. Code that’s filled with exciting, hard-to-find bugs.

• Insecure code. Crackers often exploit poor error handling to break into
software systems.

• Poor structure. If there are errors from your code that are tedious to deal
with continually, you probably have a poor interface. Express it so that
the errors are less intrusive and their handling is less onerous.

Just as you should check all potential errors in your code, you need to expose
all potentially erroneous conditions in your interfaces. Do not hide them, pre-
tending that your services will always work.

Why don’t we check for errors? There are a number of common excuses.
Which of these do you agree with? How would you counter each one?

• Error handling clutters up the flow of the code, making it harder to read,
and harder to spot the “normal” flow of execution.

• It’s extra work, and I have a deadline looming.

• I know that this function call will never return an error (printf always
works, malloc always returns new memory—if it fails, we have bigger
problems…).

• It’s only a toy program, and needn’t be written to a production-worthy level.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

54 97 Things Every Programmer Should Know

Don’t Just Learn the
Language, Understand
Its Culture
Anders Norås

iN HiGH SCHOOL, i HAD TO LEARN A FOREiGN LANGUAGE. At the time, I
thought that I’d get by nicely being good at English, so I chose to sleep through
three years of French class. A few years later, I went to Tunisia on vacation.
Arabic is the official language there and, being a former French colony, French
is also commonly used. English is only spoken in the touristy areas. Because
of my linguistic ignorance, I found myself confined at the poolside reading
Finnegans Wake, James Joyce’s tour de force in form and language. Joyce’s playful
blend of more than 40 languages was a surprising, albeit exhausting, experience.
Realizing how interwoven foreign words and phrases gave the author new ways
of expressing himself is something I’ve kept with me in my programming career.

In their seminal book, The Pragmatic Programmer (Addison-Wesley Profes-
sional), Andy Hunt and Dave Thomas encourage us to learn a new program-
ming language every year. I’ve tried to live by their advice, and throughout the
years, I’ve had the experience of programming in many languages. My most
important lesson from my polyglot adventures is that it takes more than just
learning the syntax to learn a language: you need to understand its culture.

You can write Fortran in any language, but to truly learn a language you have
to embrace it.

Don’t make excuses if your C# code is a long Main method with mostly static
helper methods, but learn why classes make sense. Don’t shy away if you have a
hard time understanding the lambda expressions used in functional languages—
force yourself to use them.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

55Collective Wisdom from the Experts

Once you’ve learned the ropes of a new language, you’ll be surprised how
you’ll start using languages you already know in new ways.

I learned how to use delegates effectively in C# from programming Ruby;
releasing the full potential of .NET’s generics gave me ideas on how I could
make Java generics more useful; and LINQ made it a breeze to teach myself
Scala.

You’ll also get a better understanding of design patterns by moving between
different languages. C programmers find that C# and Java have commoditized
the iterator pattern. In Ruby and other dynamic languages, you might still use
a visitor, but your implementation won’t look like the example from the Gang
of Four book.

Some might argue that Finnegans Wake is unreadable, while others applaud it
for its stylistic beauty. To make the book a less daunting read, single language
translations are available. Ironically, the first of these was in French.

Code is in many ways similar. If you write Wakese code with a little Python,
some Java, and a hint of Erlang, your projects will be a mess. If you instead
explore new languages to expand your mind and get fresh ideas on how you
can solve things in different ways, you will find that the code you write in your
trusty old language gets more beautiful for every new language you’ve learned.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

56 97 Things Every Programmer Should Know

Don’t Nail Your
Program into the
Upright Position
Verity Stob

i ONCE WROTE A SPOOF C++ qUiz, in which I satirically suggested the fol-
lowing strategy for exception handling:

By dint of plentiful try...catch constructs throughout our codebase, we are
sometimes able to prevent our applications from aborting. We think of the resul-
tant state as “nailing the corpse in the upright position.”

Despite my levity, I was actually summarizing a lesson I received at the knee of
Dame Bitter Experience herself.

It was a base application class in our own, homemade C++ library. It had suf-
fered the pokings of many programmers’ fingers over the years: nobody’s hands
were clean. It contained code to deal with all escaped exceptions from every-
thing else. Taking our lead from Yossarian in Catch-22, we decided, or rather felt
(decided implies more thought than went into the construction of this monster)
that an instance of this class should live forever or die in the attempt.

To this end, we intertwined multiple exception handlers. We mixed in
Windows’ structured exception handling with the native kind (remember
__try...__except in C++? Me, neither). When things threw unexpectedly, we
tried calling them again, pressing the parameters harder. Looking back, I like to
think that when writing an inner try...catch handler within the catch clause
of another, some sort of awareness crept over me that I might have accidentally
taken a slip road from the motorway of good practice into the aromatic but
insalubrious lane of lunacy. However, this is probably retrospective wisdom.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

57Collective Wisdom from the Experts

Needless to say, whenever something went wrong in applications based on this
class, they vanished like Mafia victims at the dockside, leaving behind no useful
trail of bubbles to indicate what the hell happened, notwithstanding the dump
routines that were supposedly called to record the disaster. Eventually—a long
eventually—we took stock of what we had done, and experienced shame. We
replaced the whole mess with a minimal and robust reporting mechanism. But
this was many crashes down the line.

I wouldn’t bother you with this—for surely nobody else could ever be as stupid
as we were—but for an online argument I had recently with a bloke whose
academic job title declared he should know better. We were discussing Java
code in a remote transaction. If the code failed, he argued, it should catch and
block the exception in situ. (“And then do what with it?” I asked. “Cook it for
supper?”)

He quoted the UI designers’ rule: NEVER LET THE USER SEE AN EXCEP-
TION REPORT, rather as though this settled the matter, what with it being
in caps and everything. I wonder if he was responsible for the code in one of
those blue-screened ATMs whose photos decorate the feebler blogs, and had
been permanently traumatized.

Anyway, if you should meet him, nod and smile and take no notice, as you
sidle toward the door.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

58 97 Things Every Programmer Should Know

Don’t Rely on
“Magic Happens
Here”
Alan Griffiths

iF YOU LOOK AT ANY ACTiViTY, process, or discipline from far enough away,
it looks simple. Managers with no experience of development think what pro-
grammers do is simple, and programmers with no experience of management
think the same of what managers do.

Programming is something some people do—some of the time. And the hard
part—the thinking—is the least visible and least appreciated by the uninitiated.
There have been many attempts to remove the need for this skilled think-
ing over the decades. One of the earliest and most memorable is the effort
by Grace Hopper to make programming languages less cryptic—which some
accounts predicted would remove the need for specialist programmers. The
result (COBOL) has contributed to the income of many specialist programmers
over subsequent decades.

The persistent vision that software development can be simplified by removing
programming is, to the programmer who understands what is involved, obvi-
ously naïve. But the mental process that leads to this mistake is part of human
nature, and programmers are just as prone to making it as everyone else.

On any project, there are likely many things that an individual programmer
doesn’t get actively involved in: eliciting requirements from users, getting bud-
gets approved, setting up the build server, deploying the application to QA
and production environments, migrating the business from the old processes
or programs, etc.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

59Collective Wisdom from the Experts

When you aren’t actively involved in things, there is an unconscious tendency
to assume that they are simple and happen “by magic.” While the magic con-
tinues to happen, all is well. But when—it is usually “when” and not “if ”—the
magic stops, the project is in trouble.

I’ve seen projects lose weeks of developer time because no one understood
how they relied on “the right” version of a DLL being loaded. When things
started failing intermittently, team members looked everywhere else before
someone noticed that “a wrong” version of the DLL was being loaded.

Another department was running smoothly—projects delivered on time, no
late-night debugging sessions, no emergency fixes. So smoothly, in fact, that
senior management decided that things “ran themselves,” and it could do
without the project manager. Within six months, the projects in the depart-
ment looked just like the rest of the organization—late, buggy, and continually
being patched.

You don’t have to understand all the magic that makes your project work,
but it doesn’t hurt to understand some of it—or to appreciate someone who
understands the bits you don’t.

Most importantly, make sure that when the magic stops, it can be started again.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

60 97 Things Every Programmer Should Know

Don’t Repeat
Yourself
Steve Smith

OF ALL THE PRiNCiPLES OF PROGRAMMiNG, Don’t Repeat Yourself (DRY) is
perhaps one of the most fundamental. The principle was formulated by Andy Hunt
and Dave Thomas in The Pragmatic Programmer, and underlies many other well-
known software development best practices and design patterns. The developer
who learns to recognize duplication, and understands how to eliminate it through
appropriate practice and proper abstraction, can produce much cleaner code than
one who continuously infects the application with unnecessary repetition.

Duplication is Waste

Every line of code that goes into an application must be maintained, and is a
potential source of future bugs. Duplication needlessly bloats the codebase,
resulting in more opportunities for bugs and adding accidental complexity to
the system. The bloat that duplication adds to the system also makes it more
difficult for developers working with the system to fully understand the entire
system, or to be certain that changes made in one location do not also need
to be made in other places that duplicate the logic they are working on. DRY
requires that “every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.”

Repetition in Process Calls for Automation

Many processes in software development are repetitive and easily automated.
The DRY principle applies in these contexts, as well as in the source code of
the application. Manual testing is slow, error-prone, and difficult to repeat,
so automated test suites should be used where possible. Integrating software
can be time consuming and error-prone if done manually, so a build process
should be run as frequently as possible, ideally with every check-in. Wherever
painful manual processes exist that can be automated, they should be auto-
mated and standardized. The goal is to ensure that there is only one way of
accomplishing the task, and it is as painless as possible.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

61Collective Wisdom from the Experts

Repetition in Logic Calls for Abstraction

Repetition in logic can take many forms. Copy-and-paste if-then or switch-
case logic is among the easiest to detect and correct. Many design patterns
have the explicit goal of reducing or eliminating duplication in logic within
an application. If an object typically requires several things to happen before
it can be used, this can be accomplished with an Abstract Factory or a Factory
Method pattern. If an object has many possible variations in its behavior, these
behaviors can be injected using the Strategy pattern rather than large if-then
structures. In fact, the formulation of design patterns themselves is an attempt
to reduce the duplication of effort required to solve common problems and
discuss such solutions. In addition, DRY can be applied to structures, such as
database schema, resulting in normalization.

A Matter of Principle

Other software principles are also related to DRY. The Once and Only Once prin-
ciple, which applies only to the functional behavior of code, can be thought of as
a subset of DRY. The Open/Closed Principle, which states that “software entities
should be open for extension, but closed for modification,” only works in practice
when DRY is followed. Likewise, the well-known Single Responsibility Principle,
which requires that a class have “only one reason to change,” relies on DRY.

When followed with regard to structure, logic, process, and function, the DRY
principle provides fundamental guidance to software developers and aids the
creation of simpler, more maintainable, higher-quality applications. While there
are scenarios where repetition can be necessary to meet performance or other
requirements (e.g., data denormalization in a database), it should be used only
where it directly addresses an actual rather than an imagined problem.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

62 97 Things Every Programmer Should Know

Cal Evans

iT HAS HAPPENED TO EVERY ONE OF US AT SOME POiNT. Your code was
rolled onto the staging server for system testing, and the testing manager
writes back that she has hit a problem. Your first reaction is “Quick, let me fix
that—I know what’s wrong.”

In the bigger sense, though, what is wrong is that as a developer you think you
should have access to the staging server.

In most web-based development environments, the architecture can be broken
down like this:

• Local development and unit testing on the developer’s machine

• Development server where manual or automated integration testing is
done

• Staging server where the QA team and the users do acceptance testing

• Production server

Yes, there are other servers and services sprinkled in there, like source code
control and ticketing, but you get the idea. Using this model, a developer—
even a senior developer—should never have access beyond the development
server. Most development is done on a developer’s local machine using his
favorite blend of IDEs, virtual machines, and an appropriate sprinkling of
black magic for good luck.

Don’t Touch
That Code!

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

63Collective Wisdom from the Experts

Once checked into SCC, whether automatically or manually, it should be rolled
over to the development server, where it can be tested and tweaked if neces-
sary to make sure everything works together. From this point on, though, the
developer is a spectator to the process.

The staging manager should package and roll the code to the staging server
for the QA team. Just like developers should have no need to access anything
beyond the development server, the QA team and the users have no need to
touch anything on the development server. If it’s ready for acceptance test-
ing, cut a release and roll; don’t ask the user to “just look at something real
quick” on the development server. Remember, unless you are coding the project
by yourself, other people have code there and they may not be ready for the user
to see it. The release manager is the only person who should have access to both.

Under no circumstances—ever, at all—should a developer have access to a
production server. If there is a problem, your support staff should either fix
it or request that you fix it. After it’s checked into SCC, they will roll a patch
from there. Some of the biggest programming disasters I’ve been a part of have
taken place because someone *cough*me*cough* violated this last rule. If it’s
broke, production is not the place to fix it.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

64 97 Things Every Programmer Should Know

Encapsulate
Behavior,
Not Just State
Einar Landre

iN SYSTEMS THEORY, containment is one of the most useful constructs when
dealing with large and complex system structures. In the software industry,
the value of containment or encapsulation is well understood. Containment
is supported by programming language constructs such as subroutines and
functions, modules and packages, classes, and so on.

Modules and packages address the larger-scale needs for encapsulation, while
classes, subroutines, and functions address the more fine-grained aspects of
the matter. Over the years, I have discovered that classes seem to be one of the
hardest encapsulation constructs for developers to get right. It’s not uncom-
mon to find a class with a single 3,000-line main method, or a class with only
set and get methods for its primitive attributes. These examples demonstrate
that the developers involved have not fully understood object-oriented think-
ing, having failed to take advantage of the power of objects as modeling con-
structs. For developers familiar with the terms POJO (Plain Old Java Object)
and POCO (Plain Old C# Object or Plain Old CLR Object), this was the intent
in going back to the basics of OO as a modeling paradigm—the objects are
plain and simple, but not dumb.

An object encapsulates both state and behavior, where the behavior is defined
by the actual state. Consider a door object. It has four states: closed, open,
closing, opening. It provides two operations: open and close. Depending on

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

65Collective Wisdom from the Experts

the state, the open and close operations will behave differently. This inherent
property of an object makes the design process conceptually simple. It boils
down to two simple tasks: allocation and delegation of responsibility to the
different objects including the interobject interaction protocols.

How this works in practice is best illustrated with an example. Let’s say we have
three classes: Customer, Order, and Item. A Customer object is the natural place-
holder for the credit limit and credit validation rules. An Order object knows
about its associated Customer, and its addItem operation delegates the actual credit
check by calling customer.validateCredit(item.price()). If the postcondition
for the method fails, an exception can be thrown and the purchase aborted.

Less experienced object-oriented developers might decide to wrap all the busi-
ness rules into an object very often referred to as OrderManager or OrderService.
In these designs, Order, Customer, and Item are treated as little more than record
types. All logic is factored out of the classes and tied together in one large,
procedural method with a lot of internal if-then-else constructs. These meth-
ods are easily broken and are almost impossible to maintain. The reason? The
encapsulation is broken.

So, in the end, don’t break the encapsulation, and use the power of your pro-
gramming language to maintain it.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

66 97 Things Every Programmer Should Know

Floating-Point
Numbers
Aren’t Real
Chuck Allison

FLOATiNG-POiNT NUMBERS ARE NOT “REAL NUMBERS” in the mathemati-
cal sense, even though they are called real in some programming languages,
such as Pascal and Fortran. Real numbers have infinite precision and are there-
fore continuous and nonlossy; floating-point numbers have limited precision,
so they are finite, and they resemble “badly behaved” integers, because they’re
not evenly spaced throughout their range.

To illustrate, assign 2147483647 (the largest signed 32-bit integer) to a 32-bit
float variable (x, say), and print it. You’ll see 2147483648. Now print x-64. Still
2147483648. Now print x-65, and you’ll get 2147483520! Why? Because the
spacing between adjacent floats in that range is 128, and floating-point opera-
tions round to the nearest floating-point number.

IEEE floating-point numbers are fixed-precision numbers based on base-two
scientific notation: 1.d1d2...dp 1 × 2e, where p is the precision (24 for float, 53
for double). The spacing between two consecutive numbers is 21–p+e, which can
be safely approximated by ε|x|, where ε is the machine epsilon (21–p).

Knowing the spacing in the neighborhood of a floating-point number can help
you avoid classic numerical blunders. For example, if you’re performing an
iterative calculation, such as searching for the root of an equation, there’s no
sense in asking for greater precision than the number system can give in the
neighborhood of the answer. Make sure that the tolerance you request is no
smaller than the spacing there, otherwise you’ll loop forever.

Since floating-point numbers are approximations of real numbers, there is inevi-
tably a little error present. This error, called roundoff, can lead to surprising results.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

67Collective Wisdom from the Experts

When you subtract nearly equal numbers, for example, the most significant
digits cancel one another out, so what was the least significant digit (where the
roundoff error resides) gets promoted to the most significant position in the
floating-point result, essentially contaminating any further related computa-
tions (a phenomenon known as smearing). You need to look closely at your
algorithms to prevent such catastrophic cancellation. To illustrate, consider
solving the equation x2 – 100000x + 1 = 0 with the quadratic formula. Since
the operands in the expression –b + sqrt(b2 – 4) are nearly equal in magnitude,
you can instead compute the root r1 = –b – sqrt(b2 – 4), and then obtain r2 = 1/r1,
since for any quadratic equation, ax2 + bx + c = 0, the roots satisfy r1r2 = c/a.

Smearing can occur in even more subtle ways. Suppose a library naïvely com-
putes ex by the formula 1 + x + x2/2 + x3/3! + …. This works fine for positive x, but
consider what happens when x is a large negative number. The even-powered
terms result in large positive numbers, and subtracting the odd-powered mag-
nitudes will not even affect the result. The problem here is that the roundoff in
the large, positive terms is in a digit position of much greater significance than
the true answer. The answer diverges toward positive infinity! The solution
here is also simple: for negative x, compute ex = 1/e|x|.

It should go without saying that you shouldn’t use floating-point numbers for
financial applications—that’s what decimal classes in languages like Python
and C# are for. Floating-point numbers are intended for efficient scientific
computation. But efficiency is worthless without accuracy, so remember the
source of rounding errors, and code accordingly!

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

68 97 Things Every Programmer Should Know

Fulfill Your
Ambitions with
Open Source
Richard Monson-Haefel

CHANCES ARE PRETTY GOOD that you are not developing software at work
that fulfills your most ambitious software development daydreams. Perhaps
you are developing software for a huge insurance company when you would
rather be working at Google, Apple, Microsoft, or your own startup developing
the next big thing. You’ll never get where you want to go developing software for
systems you don’t care about.

Fortunately, there is an answer to your problem: open source. There are thou-
sands of open source projects out there, many of them quite active, which offer
you any kind of software development experience you could want. If you love
the idea of developing operating systems, go help with one of the dozen oper-
ating system projects. If you want to work on music software, animation soft-
ware, cryptography, robotics, PC games, massive online player games, mobile
phones, or whatever, you’ll almost certainly find at least one open source proj-
ect dedicated to that interest.

Of course, there is no free lunch. You have to be willing to give up your free
time because you probably cannot work on an open source video game at your
day job—you still have a responsibility to your employer. In addition, very few
people make money contributing to open source projects—some do, but most
don’t. You should be willing to give up some of your free time (less time play-
ing video games and watching TV won’t kill you). The harder you work on an
open source project, the faster you’ll realize your true ambitions as a program-
mer. It’s also important to consider your employee contract—some employers
may restrict what you can contribute, even on your own time. In addition, you
need to be careful about violating intellectual property laws having to do with
copyright, patents, trademarks, and trade secrets.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

69Collective Wisdom from the Experts

Open source provides enormous opportunities for the motivated program-
mer. First, you get to see how someone else would implement a solution that
interests you—you can learn a lot by reading other people’s source code. Sec-
ond, you get to contribute your own code and ideas to the project—not every
brilliant idea you have will be accepted, but some might, and you’ll learn
something new just by working on solutions and contributing code. Third,
you’ll meet great people with the same passion for the type of software that you
have—these open source friendships can last a lifetime. Fourth, assuming you
are a competent contributor, you’ll be able to add real-world experience in the
technology that actually interests you.

Getting started with open source is pretty easy. There is a wealth of documen-
tation out there on the tools you’ll need (source code management, editors,
programming languages, build systems, etc.). Find the project you want to
work on first and learn about the tools that project uses. The documentation
on projects themselves will be light in most cases, but this perhaps matters less
because the best way to learn is to investigate the code yourself. If you want
to get involved, you could offer to help out with the documentation. Or you
could start by volunteering to write test code. While that may not sound excit-
ing, the truth is you learn much faster by writing test code for other people’s
software than almost any other activity in software. Write test code, really
good test code. Find bugs, suggest fixes, make friends, work on software you
like, and fulfill your software development ambitions.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

70 97 Things Every Programmer Should Know

The Golden Rule
of API Design
Michael Feathers

APi DESiGN iS TOUGH, PARTiCULARLY iN THE LARGE. If you are designing
an API that is going to have hundreds or thousands of users, you have to think
about how you might change it in the future and whether your changes might
break client code. Beyond that, you have to think about how users of your API
affect you. If one of your API classes uses one of its own methods internally,
you have to remember that a user could subclass your class and override it, and
that could be disastrous. You wouldn’t be able to change that method because
some of your users have given it a different meaning. Your future internal
implementation choices are at the mercy of your users.

API developers solve this problem in various ways, but the easiest way is to
lock down the API. If you are working in Java, you might be tempted to make
most of your classes and methods final. In C#, you might make your classes
and methods sealed. Regardless of the language you are using, you might be
tempted to present your API through a singleton or use static factory meth-
ods to guard it from people who might override behavior and use your code
in ways that may constrain your choices later. This all seems reasonable, but
is it really?

Over the past decade, we’ve gradually realized that unit testing is an extremely
important part of practice, but that lesson has not completely permeated the
industry. The evidence is all around us. Take an arbitrary untested class that

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

71Collective Wisdom from the Experts

uses a third-party API and try to write unit tests for it. Most of the time, you’ll
run into trouble. You’ll find that the code using the API is stuck to it like glue.
There’s no way to impersonate the API classes so that you can sense your code’s
interactions with them, or supply return values for testing.

Over time, this will get better, but only if we start to see testing as a real use
case when we design APIs. Unfortunately, it’s a little bit more involved than
just testing our code. That’s where the Golden Rule of API Design fits in: It’s
not enough to write tests for an API you develop; you have to write unit tests for
code that uses your API. When you follow this rule, you learn firsthand the
hurdles that your users will have to overcome when they try to test their code
independently.

There is no one way to make it easy for developers to test code that uses your
API. static, final, and sealed are not inherently bad constructs. They can be
useful at times. But it is important to be aware of the testing issue and, to do
that, you have to experience it yourself. Once you have, you can approach it as
you would any other design challenge.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

72 97 Things Every Programmer Should Know

The Guru Myth
Ryan Brush

ANYONE WHO HAS WORKED iN SOFTWARE LONG ENOUGH has heard
questions like this:

I’m getting exception XYZ. Do you know what the problem is?

Those asking the question rarely bother to include stack traces, error logs, or
any context leading to the problem. They seem to think you operate on a dif-
ferent plane, that solutions appear to you without analysis based on evidence.
They think you are a guru.

We expect such questions from those unfamiliar with software; to them, sys-
tems can seem almost magical. What worries me is seeing this in the software
community. Similar questions arise in program design, such as “I’m building
inventory management. Should I use optimistic locking?” Ironically, people
asking the question are often better equipped to answer it than the question’s
recipient. The questioners presumably know the context, know the require-
ments, and can read about the advantages and disadvantages of different strat-
egies. Yet they expect you to give an intelligent answer without context. They
expect magic.

It’s time for the software industry to dispel this guru myth. “Gurus” are human.
They apply logic and systematically analyze problems like the rest of us. They
tap into mental shortcuts and intuition. Consider the best programmer you’ve
ever met: at one point, that person knew less about software than you do now.
If someone seems like a guru, it’s because of years dedicated to learning and
refining thought processes. A “guru” is simply a smart person with relentless
curiosity.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

73Collective Wisdom from the Experts

Of course, there remains a huge variance in natural aptitude. Many hack-
ers out there are smarter, more knowledgeable, and more productive than I
may ever be. Even so, debunking the guru myth has a positive impact. For
instance, when working with someone smarter than me, I am sure to do the
legwork, to provide enough context so that person can efficiently apply his or
her skills. Removing the guru myth also means removing a perceived barrier
to improvement. Instead of a magical barrier, I see a continuum along which
I can advance.

Finally, one of software’s biggest obstacles is smart people who purposefully
propagate the guru myth. This might be done out of ego, or as a strategy to
increase one’s value as perceived by a client or employer. Ironically, this atti-
tude can make smart people less valuable, since they don’t contribute to the
growth of their peers. We don’t need gurus. We need experts willing to develop
other experts in their field. There is room for all of us.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

74 97 Things Every Programmer Should Know

Hard Work Does
Not Pay Off
Olve Maudal

AS A PROGRAMMER, YOU’LL FiND THAT working hard often does not pay off.
You might fool yourself and a few colleagues into believing that you are con-
tributing a lot to a project by spending long hours at the office. But the truth is
that by working less, you might achieve more—sometimes much more. If you
are trying to be focused and “productive” for more than 30 hours a week, you
are probably working too hard. You should consider reducing your workload
to become more effective and get more done.

This statement may seem counterintuitive and even controversial, but it is a
direct consequence of the fact that programming and software development
as a whole involve a continuous learning process. As you work on a project,
you will understand more of the problem domain and, hopefully, find more
effective ways of reaching the goal. To avoid wasted work, you must allow time
to observe the effects of what you are doing, reflect on the things that you see,
and change your behavior accordingly.

Professional programming is usually not like running hard for a few kilome-
ters, where the goal can be seen at the end of a paved road. Most software
projects are more like a long orienteering marathon. In the dark. With only a
sketchy map as guidance. If you just set off in one direction, running as fast as
you can, you might impress some, but you are not likely to succeed. You need
to keep a sustainable pace, and you need to adjust the course when you learn
more about where you are and where you are heading.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

75Collective Wisdom from the Experts

In addition, you always need to learn more about software development in
general and programming techniques in particular. You probably need to read
books, go to conferences, communicate with other professionals, experiment
with new implementation techniques, and learn about powerful tools that sim-
plify your job. As a professional programmer, you must keep yourself updated
in your field of expertise—just as brain surgeons and pilots are expected to
keep themselves up to date in their own fields of expertise. You need to spend
evenings, weekends, and holidays educating yourself; therefore, you cannot
spend your evenings, weekends, and holidays working overtime on your cur-
rent project. Do you really expect brain surgeons to perform surgery 60 hours
a week, or pilots to fly 60 hours a week? Of course not: preparation and educa-
tion are an essential part of their profession.

Be focused on the project, contribute as much as you can by finding smart
solutions, improve your skills, reflect on what you are doing, and adapt your
behavior. Avoid embarrassing yourself, and our profession, by behaving like
a hamster in a cage spinning the wheel. As a professional programmer, you
should know that trying to be focused and “productive” 60 hours a week is not
a sensible thing to do. Act like a professional: prepare, effect, observe, reflect,
and change.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

76 97 Things Every Programmer Should Know

How to Use a
Bug Tracker
Matt Doar

WHETHER YOU CALL THEM bugs, defects, or even design side effects, there is
no getting away from them. Knowing how to submit a good bug report, as well
as what to look for in one, are key skills for keeping a project moving along
nicely.

A good bug report needs to convey three things:

• How to reproduce the bug, as precisely as possible, and how often this
will make the bug appear

• What should have happened, at least in your opinion

• What actually happened, or at least as much information as you have
recorded

The amount and quality of information reported in a bug says as much about
the reporter as it does about the bug. Angry, terse bugs (“This function sucks!”)
tell the developers that you were having a bad time, but not much else. A bug
with plenty of context to make it easier to reproduce earns the respect of every-
one, even if it stops a release.

Bugs are like a conversation, with all the history right there in front of every-
one. Don’t blame others or deny the bug’s very existence. Instead, ask for more
information or consider what you could have missed.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

77Collective Wisdom from the Experts

Changing the status of a bug—e.g., Open to Closed—is a public statement of
what you think of the bug. Taking the time to explain why you think the bug
should be closed will save tedious hours spent later on justifying it to frus-
trated managers and customers. Changing the priority of a bug is a similar
public statement, and just because it’s trivial to you doesn’t mean it isn’t stop-
ping someone else from using the product.

Don’t overload a bug’s fields for your own purposes. Adding “VITAL:” to the
subject field may make it easier for you to sort the results of some report, but it
will eventually be copied by others and inevitably mistyped, or will need to be
removed for use in some other report. Use a new value or a new field instead,
and document how the field is supposed to be used so other people don’t have
to repeat themselves.

Make sure that everyone knows how to find the bugs that the team is supposed
to be working on. This can usually be done using a public query with an obvi-
ous name. Make sure everyone is using the same query, and don’t update this
query without first informing the team that you’re changing what everyone is
working on.

Finally, remember that a bug is not a standard unit of work any more than a
line of code is a precise measurement of effort.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

78 97 Things Every Programmer Should Know

Improve Code
by Removing It
Pete Goodliffe

Less is more. It’s a quite trite little maxim, but sometimes it really is true.

One of the improvements I’ve made to our codebase over the last few weeks is
to remove chunks of it.

We’d written the software following XP tenets, including YAGNI (that is, You
Aren’t Gonna Need It). Human nature being what it is, we inevitably fell short
in a few places.

I observed that the product was taking too long to execute certain tasks—
simple tasks that should have been near instantaneous. This was because they
were overimplemented—festooned with extra bells and whistles that were not
required, but at the time had seemed like a good idea.

So I’ve simplified the code, improved the product performance, and reduced
the level of global code entropy simply by removing the offending features
from the codebase. Helpfully, my unit tests tell me that I haven’t broken any-
thing else during the operation.

A simple and thoroughly satisfying experience.

So why did the unnecessary code end up there in the first place? Why did one
programmer feel the need to write extra code, and how did it get past review
or the pairing process? Almost certainly something like:

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

79Collective Wisdom from the Experts

• It was a fun bit of extra stuff, and the programmer wanted to write it.
(Hint: Write code because it adds value, not because it amuses you.)

• Someone thought that it might be needed in the future, so felt it was best
to code it now. (Hint: That isn’t YAGNI. If you don’t need it right now, don’t
write it right now.)

• It didn’t appear to be that big an “extra,” so it was easier to implement it
rather than go back to the customer to see whether it was really required.
(Hint: It always takes longer to write and to maintain extra code. And the
customer is actually quite approachable. A small, extra bit of code snow-
balls over time into a large piece of work that needs maintenance.)

• The programmer invented extra requirements that were neither docu-
mented nor discussed in order to justify the extra feature. The requirement
was actually bogus. (Hint: Programmers do not set system requirements; the
customer does.)

What are you working on right now? Is it all needed?

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

80 97 Things Every Programmer Should Know

Install Me
Marcus Baker

i AM NOT THE SLiGHTEST BiT iNTERESTED iN YOUR PROGRAM.

I am surrounded by problems and have a to-do list as long as my arm. The
only reason I am at your website right now is because I have heard an unlikely
rumor that every one of my problems will be eliminated by your software.
You’ll forgive me if I’m skeptical.

If eyeball-tracking studies are correct, I’ve already read the title and I’m scan-
ning for blue underlined text marked Download now. As an aside, if I arrived
at this page with a Linux browser from a UK IP, chances are I would like the
Linux version from a European mirror, so please don’t ask. Assuming the file
dialog opens straight away, I consign the thing to my download folder and
carry on reading.

We all constantly perform cost-benefit analysis of everything we do. If your
project drops below my threshold for even a second, I will ditch it and go on to
something else. Instant gratification is best.

The first hurdle is install. Don’t think that’s much of a problem? Go to your
download folder now and have a look around. Full of .tar and .zip files, right?
What percentage of those have you unpacked? How many have you installed?
If you are like me, only a third are doing more than acting as hard drive filler.

I may want doorstep convenience, but I don’t want you entering my house
uninvited. Before typing install, I would like to know exactly where you are
putting stuff. It’s my computer, and I like to keep it tidy when I can. I also want
to be able to remove your program the instant I am disenchanted with it. If
I suspect that’s impossible, I won’t install it in the first place. My machine is
stable right now, and I want to keep it that way.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

81Collective Wisdom from the Experts

If your program is GUI based, then I want to do something simple and see
a result. Wizards don’t help, because they do stuff that I don’t understand.
Chances are, I want to read a file or write one. I don’t want to create projects,
import directories, or tell you my email address. If all is working, on to the
tutorial.

If your software is a library, then I carry on reading your web page looking for
a quick start guide. I want the equivalent of “Hello world” in a five-line no-
brainer with exactly the output described by your website. No big XML files
or templates to fill out, just a single script. Remember, I have also downloaded
your rival’s framework. You know, the one who always claims to be so much
better than yours in the forums? If all is working, on to the tutorial.

There is a tutorial, isn’t there? One that talks to me in language I can understand?

And if the tutorial mentions my problem, I’ll cheer up. Now that I’m reading
about the things I can do, it starts to get interesting, fun even. I’ll lean back
and sip my tea—did I mention I was from the UK?—and I’ll play with your
examples and learn to use your creation. If it solves my problem, I’ll send you
a thank-you email. I’ll send you bug reports when it crashes, and suggestions
for features, too. I’ll even tell all my friends how your software is the best, even
though I never did try your rival’s. And all because you took such care over my
first tentative steps.

How could I ever have doubted you?

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

82 97 Things Every Programmer Should Know

Interprocess Communication
Affects Application
Response Time
Randy Stafford

RESPONSE TiME iS CRiTiCAL TO SOFTWARE USABiLiTY. Few things are as
frustrating as waiting for some software system to respond, especially when
our interaction with the software involves repeated cycles of stimulus and
response. We feel as if the software is wasting our time and affecting our pro-
ductivity. However, the causes of poor response time are less well appreciated,
especially in modern applications. Much performance management literature
still focuses on data structures and algorithms, issues that can make a differ-
ence in some cases but are far less likely to dominate performance in modern
multitier enterprise applications.

When performance is a problem in such applications, my experience has been
that examining data structures and algorithms isn’t the right place to look for
improvements. Response time depends most strongly on the number of remote
interprocess communications (IPCs) conducted in response to a stimulus.
While there can be other local bottlenecks, the number of remote interprocess
communications usually dominates. Each remote interprocess communication
contributes some nonnegligible latency to the overall response time, and these
individual contributions add up, especially when they are incurred in sequence.

A prime example is ripple loading in an application using object-relational
mapping. Ripple loading describes the sequential execution of many database
calls to select the data needed for building a graph of objects (see Lazy Load*
in Martin Fowler’s Patterns of Enterprise Application Architecture [Addison-
Wesley Professional]). When the database client is a middle-tier application
server rendering a web page, these database calls are usually executed sequen-
tially in a single thread. Their individual latencies accumulate, contributing to
the overall response time. Even if each database call takes only 10 milliseconds,

* http://martinfowler.com/eaaCatalog/lazyLoad.html

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://martinfowler.com/eaaCatalog/lazyLoad.html

83Collective Wisdom from the Experts

a page requiring 1,000 calls (which is not uncommon) will exhibit at least a
10-second response time. Other examples include web-service invocation,
HTTP requests from a web browser, distributed object invocation, request–
reply messaging, and data-grid interaction over custom network protocols.
The more remote IPCs needed to respond to a stimulus, the greater the
response time will be.

There are a few relatively obvious and well-known strategies for reducing
the number of remote interprocess communications per stimulus. One strat-
egy is to apply the principle of parsimony, optimizing the interface between
processes so that exactly the right data for the purpose at hand is exchanged
with the minimum amount of interaction. Another strategy is to parallelize
the interprocess communications where possible, so that the overall response
time becomes driven mainly by the longest-latency IPC. A third strategy is to
cache the results of previous IPCs, so that future IPCs may be avoided by hit-
ting local cache instead.

When you’re designing an application, be mindful of the number of interprocess
communications in response to each stimulus. When analyzing applications
that suffer from poor performance, I have often found IPC-to-stimulus ratios
of thousands-to-one. Reducing this ratio, whether by caching or parallelizing
or some other technique, will pay off much more than changing data structure
choice or tweaking a sorting algorithm.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

84 97 Things Every Programmer Should Know

Keep the Build
Clean
Johannes Brodwall

HAVE YOU EVER LOOKED AT a list of compiler warnings the length of an
essay on bad coding and thought to yourself, “You know, I really should do
something about that…but I don’t have time just now”? On the other hand,
have you ever looked at a lone warning that appeared in a compilation and
just fixed it?

When I start a new project from scratch, there are no warnings, no clutter, no
problems. But as the codebase grows, if I don’t pay attention, the clutter, the
cruft, the warnings, and the problems can start piling up. When there’s a lot of
noise, it’s much harder to find the warning that I really want to read among the
hundreds of warnings I don’t care about.

To make warnings useful again, I try to use a zero-tolerance policy for warn-
ings from the build. Even if the warning isn’t important, I deal with it. If it’s
not critical but still relevant, I fix it. If the compiler warns about a potential
null-pointer exception, I fix the cause—even if I “know” the problem will
never show up in production. If the embedded documentation (Javadoc or
similar) refers to parameters that have been removed or renamed, I clean up
the documentation.

If it’s something I really don’t care about and that really doesn’t matter, I ask the
team if we can change our warning policy. For example, I find that documenting

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

85Collective Wisdom from the Experts

the parameters and return value of a method in many cases doesn’t add any
value, so it shouldn’t be a warning if they are missing. Or, upgrading to a new
version of the programming language may make code that was previously OK
now emit warnings. For example, when Java 5 introduced generics, all the old
code that didn’t specify the generic type parameter would give a warning. This
is a sort of warning I don’t want to be nagged about (at least, not yet). Having a
set of warnings that are out of step with reality does not serve anyone.

By making sure that the build is always clean, I will not have to decide that a
warning is irrelevant every time I encounter it. Ignoring things is mental work,
and I need to get rid of all the unnecessary mental work I can. Having a clean
build also makes it easier for someone else to take over my work. If I leave the
warnings, someone else will have to wade through what is relevant and what
is not. Or more likely, that person will just ignore all the warnings, including
the significant ones.

Warnings from your build are useful. You just need to get rid of the noise to
start noticing them. Don’t wait for a big cleanup. When something appears that
you don’t want to see, deal with it right away. You should fix the source of the
warning, suppress the warning, or fix the warning policies of your tool. Keep-
ing the build clean is not just about keeping it free of compilation errors or
test failures: warnings are also an important and critical part of code hygiene.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

86 97 Things Every Programmer Should Know

Know How to Use
Command-Line Tools
Carroll Robinson

TODAY, MANY SOFTWARE DEVELOPMENT TOOLS are packaged in the form
of integrated development environments (IDEs). Microsoft’s Visual Studio and
the open source Eclipse are two popular examples, though there are many oth-
ers. There is a lot to like about IDEs. Not only are they easy to use, but they
also relieve the programmer of thinking about a lot of little details involving
the build process.

Ease of use, however, has its downside. Typically, when a tool is easy to use,
it’s because the tool is making decisions for you and doing a lot of things auto-
matically, behind the scenes. Thus, if an IDE is the only programming envi-
ronment that you ever use, you may never fully understand what your tools are
actually doing. You click a button, some magic occurs, and an executable file
appears in the project folder.

By working with command-line build tools, you will learn a lot more about
what the tools are doing when your project is being built. Writing your own
make files will help you to understand all of the steps (compiling, assembling,
linking, etc.) that go into building an executable file. Experimenting with the
many command-line options for these tools is a valuable educational expe-
rience as well. To get started with using command-line build tools, you can
use open source command-line tools such as GCC, or you can use the ones
supplied with your proprietary IDE. After all, a well-designed IDE is just a
graphical frontend to a set of command-line tools.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

87Collective Wisdom from the Experts

In addition to improving your understanding of the build process, there are some
tasks that can be performed more easily or more efficiently with command-line
tools than with an IDE. For example, the search and replace capabilities pro-
vided by the grep and sed utilities are often more powerful than those found
in IDEs. Command-line tools inherently support scripting, which allows for
the automation of tasks such as producing scheduled daily builds, creating
multiple versions of a project, and running test suites. In an IDE, this kind of
automation may be more difficult (if not impossible) to do, as build options
are usually specified using GUI dialog boxes and the build process is invoked
with a mouse click. If you never step outside of the IDE, you may not even
realize that these kinds of automated tasks are possible.

But wait. Doesn’t the IDE exist to make development easier and to improve
the programmer’s productivity? Well, yes. The suggestion presented here is
not that you should stop using IDEs. The suggestion is that you should “look
under the hood” and understand what your IDE is doing for you. The best way
to do that is to learn to use command-line tools. Then, when you go back to
using your IDE, you’ll have a much better understanding of what it is doing for
you and how you can control the build process. On the other hand, once you
master the use of command-line tools and experience the power and flexibility
that they offer, you may find that you prefer the command line over the IDE.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

88 97 Things Every Programmer Should Know

Know Well More Than
Two Programming
Languages
Russel Winder

THE PSYCHOLOGY OF PROGRAMMiNG: people have known for a long time
now that programming expertise is related directly to the number of different
programming paradigms that a programmer is comfortable with—that is, not
that he just knows about or knows a bit of, but that he can genuinely program
with.

Every programmer starts with one programming language. That language
has a dominating effect on the way that programmer thinks about software.
No matter how many years of experience the programmer gets using that
language, if she stays with that language, she will know only that language.
A one-language programmer is constrained in her thinking by that language.

A programmer who learns a second language will be challenged, especially if that
language has a different computational model than the first. C, Pascal, Fortran—
all have the same fundamental computational model. Switching from Fortran
to C introduces a few, but not many, challenges. Moving from C or Fortran to
C++ or Ada introduces fundamental challenges in the way programs behave.
Moving from C++ to Haskell is a significant change and hence a significant
challenge. Moving from C to Prolog is a very definite challenge.

We can enumerate a number of paradigms of computation: procedural, object-
oriented, functional, logic, dataflow, etc. Moving among these paradigms creates
the greatest challenges.

Why are these challenges good? That has to do with the way we think about
the implementation of algorithms and the idioms and patterns of implemen-
tation that apply. In particular, cross-fertilization is at the core of expertise.
Idioms for problem solutions that apply in one language may not be possible
in another language. Trying to port the idioms from one language to another
teaches us about both languages and about the problem being solved.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

89Collective Wisdom from the Experts

Cross-fertilization in the use of programming languages has huge effects. Per-
haps the most obvious is the increased and increasing use of declarative modes
of expression in systems implemented in imperative languages. Anyone versed
in functional programming can easily apply a declarative approach even when
using a language such as C. Using declarative approaches generally leads to
shorter and more comprehensible programs. C++, for instance, certainly takes
this on board with its wholehearted support for generic programming, which
almost necessitates a declarative mode of expression.

The consequence of all this is that it behooves every programmer to be well
skilled in programming in at least two different paradigms, and ideally at least
the aforementioned five. Programmers should always be interested in learning
new languages, preferably from an unfamiliar paradigm. Even if their day job
always uses the same programming language, the increased sophistication of
use of that language when a person can cross-fertilize from other paradigms
should not be underestimated. Employers should take this into account and
allow room in their training budget for employees to learn languages that
are not currently being used, as a way of increasing the sophistication of the
languages that are being used.

Although it’s a start, a one-week training course is not sufficient to learn a new
language: it generally takes a good few months of use, even if part-time, to gain
a proper working knowledge of a language. It is the idioms of use, not just the
syntax and computational model, that are the important factors.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

90 97 Things Every Programmer Should Know

Know Your IDE
Heinz Kabutz

iN THE 1980S, our programming environments were typically nothing bet-
ter than glorified text editors…if we were lucky. Syntax highlighting, which
we take for granted nowadays, was a luxury that certainly was not available
to everyone. Pretty printers to format our code nicely were usually external
tools that had to be run to correct our spacing. Debuggers were also separate
programs run to step through our code, but with a lot of cryptic keystrokes.

During the 1990s, companies began to recognize the potential income that
they could derive from equipping programmers with better and more useful
tools. The Integrated Development Environment (IDE) combined the previ-
ous editing features with a compiler, debugger, pretty printer, and other tools.
During that time, menus and the mouse also became popular, which meant
that developers no longer needed to learn cryptic key combinations to use
their editors. They could simply select their command from the menu.

In the 21st century, IDEs have become so commonplace that they are given
away for free by companies wishing to gain market share in other areas. The
modern IDE is equipped with an amazing array of features. My favorite is
automated refactoring, particularly Extract Method, where I can select and
convert a chunk of code into a method. The refactoring tool will pick up all the
parameters that need to be passed into the method, which makes it extremely
easy to modify code. My IDE will even detect other chunks of code that could
also be replaced by this method and ask me whether I would like to replace
them, too.

Another amazing feature of modern IDEs is the ability to enforce style rules
within a company. For example, in Java, some programmers have started
making all parameters final (which, in my opinion, is a waste of time).

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

91Collective Wisdom from the Experts

However, since they have such a style rule, all I would need to do to follow
it is set it up in my IDE: I would get a warning for any non-final parameter.
Style rules can also be used to find probable bugs, such as comparing auto-
boxed objects for reference equality, e.g., using == on primitive values that are
autoboxed into reference objects.

Unfortunately, modern IDEs do not require us to invest effort to learn how
to use them. When I first programmed C on Unix, I had to spend quite a bit of
time learning how the vi editor worked, due to its steep learning curve. This time
spent up front paid off handsomely over the years. I am even typing the draft of
this article with vi. Modern IDEs have a very gradual learning curve, which can
have the effect that we never progress beyond the most basic usage of the tool.

My first step in learning an IDE is to memorize the keyboard shortcuts. Since
my fingers are on the keyboard when I’m typing my code, pressing Ctrl+Shift+I
to inline a variable prevents breaking the flow, whereas switching to navigate
a menu with my mouse interrupts it. These interruptions lead to unnecessary
context switches, making me much less productive if I try to do everything the
lazy way. The same rule also applies to keyboard skills: learn to touch type; you
won’t regret the time invested up front.

Lastly, as programmers we have time-proven Unix streaming tools that can
help us manipulate our code. For example, if during a code review, I noticed
that the programmers had named lots of classes the same, I could find these
very easily using the tools find, sed, sort, uniq, and grep, like this:

find . -name "*.java" | sed 's/.*\///' | sort | uniq -c | grep -v "^ *1 " | sort -r

We expect a plumber coming to our house to be able to use his blowtorch. Let’s
spend a bit of time to study how to become more effective with our IDE.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

92 97 Things Every Programmer Should Know

Know Your Limits
Greg Colvin

Man’s got to know his limitations.
—Dirty Harry

YOUR RESOURCES ARE LiMiTED. You only have so much time and money to
do your work, including the time and money needed to keep your knowledge,
skills, and tools up to date. You can only work so hard, so fast, so smart, and so
long. Your tools are only so powerful. Your target machines are only so power-
ful. So you have to respect the limits of your resources.

How to respect those limits? Know yourself, know your people, know your
budgets, and know your stuff. Especially, as a software engineer, know the
space and time complexity of your data structures and algorithms, and the
architecture and performance characteristics of your systems. Your job is to
create an optimal marriage of software and systems.

Space and time complexity are given as the function O(f(n)), which for n
equal the size of the input is the asymptotic space or time required as n grows
to infinity. Important complexity classes
for f(n) include ln(n), n, n ln(n), ne, and
en. As graphing these functions clearly
shows, as n gets bigger, O(ln(n)) is ever so
much smaller than O(n) and O(n ln(n)),
which are ever so much smaller than
O(ne) and O(en). As Sean Parent puts it,
for achievable n, all complexity classes
amount to near-constant, near-linear, or
near-infinite.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

93Collective Wisdom from the Experts

Complexity analysis is measured in
terms of an abstract machine, but
software runs on real machines.
Modern computer systems are orga-
nized as hierarchies of physical and
virtual machines, including language
runtimes, operating systems, CPUs,
cache memory, random-access mem-
ory, disk drives, and networks. This
table shows the limits on random
access time and storage capacity for a
typical networked server.

Note that capacity and speed vary by several orders of magnitude. Caching
and lookahead are used heavily at every level of our systems to hide this varia-
tion, but they only work when access is predictable. When cache misses are
frequent, the system will be thrashing. For example, to randomly inspect every
byte on a hard drive could take 32 years. Even to randomly inspect every byte
in RAM could take 11 minutes. Random access is not predictable. What is?
That depends on the system, but reaccessing recently used items and accessing
items sequentially are usually a win.

Algorithms and data structures vary in how effectively they use caches. For
instance:

• Linear search makes good use of lookahead, but requires O(n) comparisons.

• Binary search of a sorted array requires only O(log(n)) comparisons.

• Search of a van Emde Boas tree is O(log(n)) and cache-oblivious.

How to choose? In the last analysis, by measuring. The table below shows the
time required to search arrays of 64-bit integers via these three methods. On my
computer:

• Linear search is competitive for
small arrays, but loses exponen-
tially for larger arrays.

• van Emde Boas wins hands
down, thanks to its predictable
access pattern.

Search time (ns)

8 50 90 40

64 180 150 70

512 1,200 230 100

4,096 17,000 320 160
Linear Binary vEB

You pays your money and you takes your choice.

—Punch

Access time Capacity

Register < 1 ns 64 b

Cache line 64 B

 L1 cache 1 ns 64 KB

 L2 cache 4 ns 8 MB

RAM 20 ns 32 GB

Disk 10 ms 10 TB

LAN 20 ms > 1 PB

Internet 100 ms > 1 ZB

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

94 97 Things Every Programmer Should Know

Know Your
Next Commit
Dan Bergh Johnsson

i TAPPED THREE PROGRAMMERS ON THEiR SHOULDERS and asked what
they were doing. “I am refactoring these methods,” the first answered. “I am
adding some parameters to this web action,” the second answered. The third
answered, “I am working on this user story.”

It might seem that the first two were engrossed in the details of their work,
while only the third could see the bigger picture, and that he had the better
focus. However, when I asked when and what they would commit, the picture
changed dramatically. The first two were pretty clear about what files would be
involved, and would be finished within an hour or so. The third programmer
answered, “Oh, I guess I will be ready within a few days. I will probably add a
few classes and might change those services in some way.”

The first two did not lack a vision of the overall goal. They had selected tasks
they thought led in a productive direction, and could be finished within a
couple of hours. Once they had finished those tasks, they would select a new
feature or refactoring to work on. All the code written was thus done with a
clear purpose and a limited, achievable goal in mind.

The third programmer had not been able to decompose the problem and was
working on all aspects at once. He had no idea of what it would take, basi-
cally doing speculative programming, hoping to arrive at some point where he
would be able to commit. Most probably, the code written at the start of this
long session was poorly matched for the solution that came out in the end.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

95Collective Wisdom from the Experts

What would the first two programmers do if their tasks took more than two
hours? After realizing they had taken on too much, they would most likely
throw away their changes, define smaller tasks, and start over. To keep work-
ing would have lacked focus and led to speculative code entering the reposi-
tory. Instead, changes would be thrown away, but the insights kept.

The third programmer might keep on guessing and desperately try to patch
together his changes into something that could be committed. After all, you
cannot throw away code changes you have done—that would be wasted work,
wouldn’t it? Unfortunately, not throwing the code away leads to slightly odd
code that lacks a clear purpose entering the repository.

At some point, even the commit-focused programmers might fail to find
something useful they thought could be finished in two hours. Then, they
would go directly into speculative mode, playing around with the code and, of
course, throwing away the changes whenever some insight led them back on
track. Even these seemingly unstructured hacking sessions have purpose: to
learn about the code to be able to define a task that would constitute a produc-
tive step.

Know your next commit. If you cannot finish, throw away your changes, then
define a new task you believe in with the insights you have gained. Do specula-
tive experimentation whenever needed, but do not let yourself slip into specu-
lative mode without noticing. Do not commit guesswork into your repository.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

96 97 Things Every Programmer Should Know

Large, Interconnected
Data Belongs to
a Database
Diomidis Spinellis

iF YOUR APPLiCATiON is going to handle a large, persistent, interconnected
set of data elements, don’t hesitate to store it in a relational database. In the
past, RDBMSs used to be expensive, scarce, complex, and unwieldy beasts.
This is no longer the case. Nowadays, RDBMS systems are easy to find—it is
likely that the system you’re using already has one or two installed. Some very
capable RDBMSs, like MySQL and PostgreSQL, are available as open source
software, so cost of purchase is no longer an issue. Even better, so-called
embedded database systems can be linked as libraries directly into your appli-
cation, requiring almost no setup or management—two notable open source
ones are SQLite and HSQLDB. These systems are extremely efficient.

If your application’s data is larger than the system’s RAM, an indexed RDBMS
table will perform orders of magnitude faster than your library’s map collec-
tion type, which will thrash virtual memory pages. Modern database offer-
ings can easily grow with your needs. With proper care, you can scale up an
embedded database to a larger database system when required. Later on, you
can switch from a free, open source offering to a better-supported or more
powerful proprietary system.

Once you get the hang of SQL, writing database-centric applications is a joy.
After you’ve stored your properly normalized data in the database, it’s easy to
extract facts efficiently with a readable SQL query; there’s no need to write
any complex code. Similarly, a single SQL command can perform complex data
changes. For one-off modifications—say, a change in the way you organize your
persistent data—you don’t even need to write code: just fire up the database’s
direct SQL interface. This same interface also allows you to experiment with
queries, sidestepping a regular programming language’s compile–edit cycle.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

97Collective Wisdom from the Experts

Another advantage of basing your code around an RDBMS involves the han-
dling of relationships between your data elements. You can describe consis-
tency constraints on your data in a declarative way, avoiding the risk of the
dangling pointers you get if you forget to update your data in an edge case. For
example, you can specify that if a user is deleted, then the messages sent by that
user should be removed as well.

You can also create efficient links between the entities stored in the database
any time you want, simply by creating an index. There is no need to perform
expensive and extensive refactorings of class fields. In addition, coding around
a database allows multiple applications to access your data in a safe way. This
makes it easy to upgrade your application for concurrent use and also to code
each part of your application using the most appropriate language and platform.
For instance, you could write the XML backend of a web-based application in
Java, some auditing scripts in Ruby, and a visualization interface in Processing.*

Finally, keep in mind that the RDBMS will sweat hard to optimize your SQL
commands, allowing you to concentrate on your application’s functional-
ity rather than on algorithmic tuning. Advanced database systems will even
take advantage of multicore processors behind your back. And, as technology
improves, so will your application’s performance.

* http://www.processing.org/

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.processing.org/

98 97 Things Every Programmer Should Know

Learn Foreign
Languages
Klaus Marquardt

PROGRAMMERS NEED TO COMMUNiCATE. A lot.

There are periods in a programmer’s life when most communication seems to
be with the computer—more precisely, with the programs running on that com-
puter. This communication is about expressing ideas in a machine-readable way.
This remains an exhilarating prospect: programs are ideas turned into reality,
with virtually no physical substance involved.

Programmers need to be fluent in the language of the machine, whether real
or virtual, and in the abstractions that can be related to that language via devel-
opment tools. It is important to learn many different abstractions, otherwise
some ideas become incredibly hard to express. Good programmers need to be
able to stand outside their daily routine, to be aware of other languages that
are expressive for other purposes. The time always comes when this pays off.

Beyond communication with machines, programmers need to communicate
with their peers. Today’s large projects are more social endeavors than simply
the applied art of programming. It is important to understand and express
more than the machine-readable abstractions can. Most of the best program-
mers I know are also very fluent in their mother tongue, and typically in other
languages as well. This is not just about communication with others: speaking
a language well also leads to a clarity of thought that is indispensable when
abstracting a problem. And this is what programming is also about.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

99Collective Wisdom from the Experts

Beyond communication with machine, self, and peers, a project has many
stakeholders, most with a different or no technical background. They live in
testing, quality, and deployment; in marketing and sales; they are end users
in some office (or store or home). You need to understand them and their
concerns. This is almost impossible if you cannot speak their language—the
language of their world, their domain. While you might think a conversation
with them went well, they probably didn’t.

If you talk to accountants, you need a basic knowledge of cost-center account-
ing, of tied capital, capital employed, et al. If you talk to marketing or lawyers,
some of their jargon and language (and thus, their minds) should be familiar
to you. All these domain-specific languages need to be mastered by someone
in the project—ideally, the programmers. Programmers are ultimately respon-
sible for bringing the ideas to life via a computer.

And, of course, life is more than software projects. As noted by Charlemagne,
to know another language is to have another soul. For your contacts beyond the
software industry, you will appreciate knowing foreign languages. To know
when to listen rather than talk. To know that most language is without words.

Whereof one cannot speak, thereof one must be silent.
—Ludwig Wittgenstein

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://en.wikipedia.org/wiki/Charlemagne

100 97 Things Every Programmer Should Know

Learn to Estimate
Giovanni Asproni

AS A PROGRAMMER, you need to be able to provide estimates to your man-
agers, colleagues, and users for the tasks you need to perform, so that they
will have a reasonably accurate idea of the time, costs, technology, and other
resources needed to achieve their goals.

To be able to estimate well, it is obviously important to learn some estimation
techniques. First of all, however, it is fundamental to learn what estimates are,
and what they should be used for—as strange as it may seem, many developers
and managers don’t really know this.

The following exchange between a project manager and a programmer is not
atypical:

Project Manager: Can you give me an estimate of the time necessary to
develop feature xyz?
Programmer: One month.
Project Manager: That’s far too long! We’ve only got one week.
Programmer: I need at least three.
Project Manager: I can give you two at most.
Programmer: Deal!

The programmer, at the end, comes up with an “estimate” that matches what
is acceptable for the manager. But since it is seen to be the programmer’s esti-
mate, the manager will hold the programmer accountable to it. To understand
what is wrong with this conversation, we need three definitions—estimate,
target, and commitment:

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

101Collective Wisdom from the Experts

• An estimate is an approximate calculation or judgment of the value, number,
quantity, or extent of something. This definition implies that an estimate is
a factual measure based on hard data and previous experience—hopes and
wishes must be ignored when calculating it. The definition also implies that,
being approximate, an estimate cannot be precise, e.g., a development task
cannot be estimated to last 234.14 days.

• A target is a statement of a desirable business objective, e.g., “The system
must support at least 400 concurrent users.”

• A commitment is a promise to deliver specified functionality at a certain
level of quality by a certain date or event. One example could be “The
search functionality will be available in the next release of the product.”

Estimates, targets, and commitments are independent from one another,
but targets and commitments should be based on sound estimates. As Steve
McConnell notes, “The primary purpose of software estimation is not to pre-
dict a project’s outcome; it is to determine whether a project’s targets are real-
istic enough to allow the project to be controlled to meet them.” Thus, the
purpose of estimation is to make proper project management and planning
possible, allowing the project stakeholders to make commitments based on
realistic targets.

What the manager in the preceding conversation was really asking the pro-
grammer was to make a commitment based on an unstated target that the
manager had in mind, not to provide an estimate. The next time you are asked
to provide an estimate, make sure everybody involved knows what they are
talking about, and your projects will have a better chance of succeeding. Now
it’s time to learn some techniques.…

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

102 97 Things Every Programmer Should Know

Learn to Say,
“Hello, World”
Thomas Guest

PAUL LEE, username leep, more commonly known as Hoppy, had a reputa-
tion as the local expert on programming issues. I needed help. I walked across
to Hoppy’s desk and asked whether he could take a look at some code for me.

“Sure,” said Hoppy, “pull up a chair.” I took care not to topple the empty cola
cans stacked in a pyramid behind him.

“What code?”

“In a function in a file,” I said.

“So, let’s take a look at this function.” Hoppy moved aside a copy of K&R and
slid his keyboard in front of me.

“Where’s the IDE?” Apparently, Hoppy had no IDE running, just some editor
that I couldn’t operate. He grabbed back the keyboard. A few keystrokes later, we
had the file open—it was quite a big file—and were looking at the function—it
was quite a big function. He paged down to the conditional block I wanted to
ask about.

“What would this clause actually do if x is negative?” I asked. “Surely it’s wrong.”

I’d been trying all morning to find a way to force x to be negative, but the big
function in the big file was part of a big project, and the cycle of recompil-
ing and then rerunning my experiments was wearing me down. Couldn’t an
expert like Hoppy just tell me the answer?

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

103Collective Wisdom from the Experts

Hoppy admitted he wasn’t sure. To my surprise, he didn’t reach for K&R.
Instead, he copied the code block into a new editor buffer, reindented it,
wrapped it up in a function. A short while later, he had coded up a main func-
tion that looped forever, prompting the user for input values, passing them to
the function, printing out the result. He saved the buffer as a new file, tryit.c.
All of this I could have done for myself, though perhaps not as quickly. But his
next step was wonderfully simple and, at the time, quite foreign to my way of
working:

$ cc tryit.c && ./a.out

Look! His actual program, conceived just a few minutes earlier, was now up
and running. We tried a few values and confirmed my suspicions (so I’d been
right about something!) and then he cross-checked the relevant section of
K&R. I thanked Hoppy and left, again taking care not to disturb his cola can
pyramid.

Back at my own desk, I closed down my IDE. I’d become so used to working
on a big project within a big product that I’d started to think that was what I
should be doing. A general-purpose computer can do little tasks, too. I opened
a text editor and began typing:

#include <stdio.h>

int main()

{

printf("Hello, World\n");

return 0;

}

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

104 97 Things Every Programmer Should Know

Let Your Project
Speak for Itself
Daniel Lindner

YOUR PROjECT PROBABLY HAS A VERSiON CONTROL SYSTEM iN PLACE.

Perhaps it is connected to a continuous integration server that verifies correct-
ness by automated tests. That’s great.

You can include tools for static code analysis in your continuous integration
server to gather code metrics. These metrics provide feedback about specific
aspects of your code, as well as their evolution over time. When you install
code metrics, there will always be a red line that you do not want to cross. Let’s
assume you started with 20% test coverage and never want to fall below 15%.
Continuous integration helps you keep track of all these numbers, but you still
have to check regularly. Imagine you could delegate this task to the project
itself and rely on it to report when things get worse.

You need to give your project a voice. This can be done by email or instant
messaging, informing the developers about the latest decline or improvement
in numbers. But it’s even more effective to embody the project in your office
by using an extreme feedback device (XFD).

The idea of XFDs is to drive a physical device such as a lamp, a portable foun-
tain, a toy robot, or even a USB rocket launcher, based on the results of the
automatic analysis. Whenever your limits are broken, the device alters its state.
In case of a lamp, it will light up, bright and obvious. You can’t miss the message
even if you’re hurrying out the door to get home.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

105Collective Wisdom from the Experts

Depending on the type of extreme feedback device, you can hear the build
break, see the red warning signals in your code, or even smell your code smells.
The devices can be replicated at different locations if you work on a distributed
team. You can place a traffic light in your project manager’s office, indicating
overall project health state. Your project manager will appreciate it.

Let your creativity guide you in choosing an appropriate device. If your culture
is rather geeky, you might look for ways to equip your team mascot with radio-
controlled toys. If you want a more professional look, invest in sleek designer
lamps. Search the Internet for more inspiration. Anything with a power plug
or a remote control has the potential to be used as an extreme feedback device.

The extreme feedback device acts as the voice box of your project. The project
now resides physically with the developers, complaining to or praising them
according to the rules the team has chosen. You can drive this personification
further by applying speech-synthesis software and a pair of loudspeakers. Now
your project really speaks for itself.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

106 97 Things Every Programmer Should Know

The Linker Is Not a
Magical Program
Walter Bright

DEPRESSiNGLY OFTEN (happened to me again just before I wrote this), the
view that many programmers have of the process of going from source code to
a statically linked executable in a compiled language is:

1. Edit source code.
2. Compile source code into object files.
3. Something magical happens.
4. Run executable.

Step 3 is, of course, the linking step. Why would I say such an outrageous
thing? I’ve been doing tech support for decades, and I get the following con-
cerns again and again:

1. The linker says def is defined more than once.
2. The linker says abc is an unresolved symbol.
3. Why is my executable so large?

Followed by “What do I do now?” usually with the phrases “seems to” and
“somehow” mixed in, and an aura of utter bafflement. It’s the “seems to” and
“somehow” that indicate that the linking process is viewed as a magical pro-
cess, presumably understandable only by wizards and warlocks. The process of
compiling does not elicit these kinds of phrases, implying that programmers
generally understand how compilers work, or at least what they do.

A linker is a stupid, pedestrian, straightforward program. All it does is concate-
nate together the code and data sections of the object files, connect the references
to symbols with their definitions, pull unresolved symbols out of the library, and
write out an executable. That’s it. No spells! No magic! The tedium in writing a
linker is typically all about decoding and generating the usually ridiculously over-
complicated file formats, but that doesn’t change the essential nature of a linker.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

107Collective Wisdom from the Experts

So, let’s say the linker is saying def is defined more than once. Many program-
ming languages, such as C, C++, and D, have both declarations and defini-
tions. Declarations normally go into header files, like:

extern int iii;

which generates an external reference to the symbol iii. A definition, on the
other hand, actually sets aside storage for the symbol, usually appears in the
implementation file, and looks like this:

int iii = 3;

How many definitions can there be for each symbol? As in the film Highlander,
there can be only one. So, what if a definition of iii appears in more than one
implementation file?

// File a.c

int iii = 3;

// File b.c

double iii(int x) { return 3.7; }

The linker will complain about iii being multiply defined.

Not only can there be only one, there must be one. If iii appears only as a
declaration, but never a definition, the linker will complain about iii being an
unresolved symbol.

To determine why an executable is the size it is, take a look at the map file
that linkers optionally generate. A map file is nothing more than a list of all
the symbols in the executable, along with their addresses. This tells you what
modules were linked in from the library, and the sizes of each module. Now
you can see where the bloat is coming from. Often, there will be library mod-
ules that you have no idea why were linked in. To figure it out, temporarily
remove the suspicious module from the library, and relink. The undefined
symbol error then generated will indicate who is referencing that module.

Although it is not always immediately obvious why you get a particular
linker message, there is nothing magical about linkers. The mechanics are
straightforward; it’s the details you have to figure out in each case.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

108 97 Things Every Programmer Should Know

The Longevity of
Interim Solutions
Klaus Marquardt

WHY DO WE CREATE iNTERiM SOLUTiONS?

Typically, there is some immediate problem to solve. It might be internal to the
development team, some tooling that fills a gap in the toolchain. It might be exter-
nal, visible to end users, such as a workaround that addresses missing functionality.

In most systems and teams, you will find some software that is somewhat segregated
from the system, that is considered a draft to be changed sometime, that does not fol-
low the standards and guidelines that shaped the rest of the code. Inevitably, you will
hear developers complaining about these. The reasons for their creation are many
and varied, but the key to an interim solution’s success is simple: it is useful.

Interim solutions, however, acquire inertia (or momentum, depending on your
point of view). Because they are there, ultimately useful and widely accepted,
there is no immediate need to do anything else. Whenever a stakeholder has
to decide what action adds the most value, there will be many that are ranked
higher than proper integration of an interim solution. Why? Because it is there,
it works, and it is accepted. The only perceived downside is that it does not fol-
low the chosen standards and guidelines—except for a few niche markets, this
is not considered to be a significant force.

So the interim solution remains in place. Forever.

And if problems arise with that interim solution, it is unlikely that there will be
provision for an update that brings it into line with accepted production qual-
ity. What to do? A quick interim update on that interim solution often does the
job, and will most likely be well received. It exhibits the same strengths as the
initial interim solution…it is just more up to date.

Is this a problem?

The answer depends on your project, and on your personal stake in the produc-
tion code standards. When the system contains too many interim solutions, its

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

109Collective Wisdom from the Experts

entropy or internal complexity grows and its maintainability decreases. How-
ever, this is probably the wrong question to ask first. Remember that we are talk-
ing about a solution. It may not be your preferred solution—it is unlikely to be
anyone’s preferred solution—but the motivation to rework this solution is weak.

So what can we do if we see a problem?

1. Avoid creating an interim solution in the first place.

2. Change the forces that influence the decision of the project manager.

3. Leave it as is.

Let’s examine these options more closely:

1. Avoidance is simply not an option in many cases. There is an actual prob-
lem to solve, and the standards have turned out to be too restrictive. You
might spend some energy trying to change the standards—an honorable,
albeit tedious, endeavor—and that change will not be effective in time for
your problem at hand.

2. The forces are rooted in the project culture, which resists volitional
change. It could be successful in very small projects—especially if it’s only
you—and you just happen to clean the mess without asking in advance.
It could also be successful if the project is such a mess that it is visibly
stalled, and some time for cleaning up is commonly accepted.

3. The status quo automatically applies if the previous option does not.

You will create many solutions; some of them will be interim, most of them will
be useful. The best way to overcome interim solutions is to make them super-
fluous, to provide a more elegant and useful solution. May you be granted the
serenity to accept the things you cannot change, the courage to change the
things you can, and the wisdom to know the difference.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://en.wikipedia.org/wiki/Serenity_prayer

110 97 Things Every Programmer Should Know

Make Interfaces Easy to
Use Correctly and Hard
to Use Incorrectly
Scott Meyers

ONE OF THE MOST COMMON TASKS in software development is interface
specification. Interfaces occur at the highest level of abstraction (user inter-
faces), at the lowest (function interfaces), and at levels in between (class inter-
faces, library interfaces, etc.). Regardless of whether you work with end users
to specify how they’ll interact with a system, collaborate with developers to
specify an API, or declare functions private to a class, interface design is an
important part of your job. If you do it well, your interfaces will be a pleasure
to use and will boost others’ productivity. If you do it poorly, your interfaces
will be a source of frustration and errors.

Good interfaces are:

Easy to use correctly
People using a well-designed interface almost always use the interface cor-
rectly, because that’s the path of least resistance. In a GUI, they almost
always click on the right icon, button, or menu entry, because it’s the obvi-
ous and easy thing to do. In an API, they almost always pass the correct
parameters with the correct values, because that’s what’s most natural.
With interfaces that are easy to use correctly, things just work.

Hard to use incorrectly
Good interfaces anticipate mistakes people might make, and make them
difficult—ideally, impossible—to commit. A GUI might disable or remove
commands that make no sense in the current context, for example, or an
API might eliminate argument-ordering problems by allowing parameters
to be passed in any order.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

111Collective Wisdom from the Experts

A good way to design interfaces that are easy to use correctly is to exercise
them before they exist. Mock up a GUI—possibly on a whiteboard or using
index cards on a table—and play with it before any underlying code has been
created. Write calls to an API before the functions have been declared. Walk
through common use cases and specify how you want the interface to behave.
What do you want to be able to click on? What do you want to be able to pass?
Easy-to-use interfaces seem natural, because they let you do what you want
to do. You’re more likely to come up with such interfaces if you develop them
from a user’s point of view. (This perspective is one of the strengths of test-first
programming.)

Making interfaces hard to use incorrectly requires two things. First, you must
anticipate errors users might make and find ways to prevent them. Second,
you must observe how an interface is misused during early release and modify
the interface—yes, modify the interface!—to prevent such errors. The best way
to prevent incorrect use is to make such use impossible. If users keep wanting
to undo an irrevocable action, try to make the action revocable. If they keep
passing the wrong value to an API, do your best to modify the API to take the
values that users want to pass.

Above all, remember that interfaces exist for the convenience of their users,
not their implementers.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

112 97 Things Every Programmer Should Know

Make the Invisible
More Visible
Jon Jagger

MANY ASPECTS OF iNViSiBiLiTY are rightly lauded as software principles to
uphold. Our terminology is rich in invisibility metaphors—mechanism trans-
parency and information hiding, to name but two. Software and the process of
developing it can be, to paraphrase Douglas Adams, mostly invisible:

• Source code has no innate presence, no innate behavior, and doesn’t obey
the laws of physics. It’s visible when you load it into an editor, but close
the editor and it’s gone. Think about it too long and, like the tree falling
down with no one to hear it, you start to wonder if it exists at all.

• A running application has presence and behavior, but reveals nothing of
the source code it was built from. Google’s home page is pleasingly minimal;
the goings on behind it are surely substantial.

• If you’re 90% done and endlessly stuck trying to debug your way through
the last 10%, then you’re not 90% done, are you? Fixing bugs is not mak-
ing progress. You aren’t paid to debug. Debugging is waste. It’s good to
make waste more visible so you can see it for what it is and start thinking
about trying not to create it in the first place.

• If your project is apparently on track, and one week later it’s six months
late, you have problems—the biggest of which is probably not that it’s six
months late, but the invisibility force fields powerful enough to hide six
months of lateness! Lack of visible progress is synonymous with lack of
progress.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

113Collective Wisdom from the Experts

Invisibility can be dangerous. You think more clearly when you have some-
thing concrete to tie your thinking to. You manage things better when you can
see them and see them constantly changing:

• Writing unit tests provides evidence about how easy the code unit is to
unit test. It helps reveal the presence (or absence) of developmental quali-
ties you’d like the code to exhibit, such as low coupling and high cohesion.

• Running unit tests provides evidence about the code’s behavior. It helps
reveal the presence (or absence) of runtime qualities you’d like the appli-
cation to exhibit, such as robustness and correctness.

• Using bulletin boards and cards makes progress visible and concrete.
Tasks can be seen as Not Started, In Progress, or Done without reference
to a hidden project management tool and without having to chase pro-
grammers for fictional status reports.

• Doing incremental development increases the visibility of development
progress (or lack of it) by increasing the frequency of development evi-
dence. Completion of releasable software reveals reality; estimates do not.

It’s best to develop software with plenty of regular visible evidence. Visibility
gives confidence that progress is genuine and not an illusion, deliberate and
not unintentional, repeatable and not accidental.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

114 97 Things Every Programmer Should Know

Message Passing Leads
to Better Scalability
in Parallel Systems
Russel Winder

PROGRAMMERS ARE TAUGHT from the very outset of their study of computing
that concurrency—and especially parallelism, a special subset of concurrency—
is hard, that only the very best can ever hope to get it right, and even they get it
wrong. Invariably, there is great focus on threads, semaphores, monitors, and
how hard it is to get concurrent access to variables to be thread-safe.

True, there are many difficult problems, and they can be very hard to solve.
But what is the root of the problem? Shared memory. Almost all the problems
of concurrency that people go on and on about relate to the use of shared
mutable memory: race conditions, deadlock, livelock, etc. The answer seems
obvious: either forgo concurrency or eschew shared memory!

Forgoing concurrency is almost certainly not an option. Computers have more
and more cores on an almost quarterly basis, so harnessing true parallelism
becomes more and more important. We can no longer rely on ever-increasing
processor clock speeds to improve application performance. Only by exploit-
ing parallelism will the performance of applications improve. Obviously, not
improving performance is an option, but it is unlikely to be acceptable to users.

So can we eschew shared memory? Definitely.

Instead of using threads and shared memory as our programming model, we
can use processes and message passing. Process here just means a protected
independent state with executing code, not necessarily an operating system
process. Languages such as Erlang (and occam before it) have shown that

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

115Collective Wisdom from the Experts

processes are a very successful mechanism for programming concurrent and
parallel systems. Such systems do not have all the synchronization stresses
that shared-memory, multithreaded systems have. Moreover, there is a formal
model—Communicating Sequential Processes (CSP)—that can be applied as
part of the engineering of such systems.

We can go further and introduce dataflow systems as a way of computing. In
a dataflow system, there is no explicitly programmed control flow. Instead, a
directed graph of operators, connected by data paths, is set up and then data
is fed into the system. Evaluation is controlled by the readiness of data within
the system. Definitely no synchronization problems.

That said, languages such as C, C++, Java, Python, and Groovy are the prin-
cipal languages of systems development, and all of these are presented to
programmers as languages for developing shared-memory, multithreaded
systems. So what can be done? The answer is to use—or, if they don’t exist,
create—libraries and frameworks that provide process models and message
passing, avoiding all use of shared mutable memory.

All in all, not programming with shared memory, but instead using message
passing, is likely to be the most successful way of implementing systems that
harness the parallelism that is now endemic in computer hardware. Perhaps
bizarrely, although processes predate threads as a unit of concurrency, the
future seems to be in using threads to implement processes.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

116 97 Things Every Programmer Should Know

Linda Rising

MAYBE iT’S BECAUSE MOST OF THEM ARE SMART PEOPLE, but in all the
years I’ve taught and worked side by side with programmers, it seems that
most of them thought that since the problems they were struggling with were
difficult, the solutions should be just as difficult for everyone (maybe even
for themselves a few months after the code was written) to understand and
maintain.

I remember one incident with Joe, a student in my data structures class, who
had to come in to show me what he’d written. “Betcha can’t guess what it does!”
he crowed.

“You’re right,” I agreed, without spending too much time on his example and
wondering how to get an important message across. “I’m sure you’ve been
working hard on this. I wonder, though, if you haven’t forgotten something
important. Say, Joe, don’t you have a younger brother?”

“Yep. Sure do! Phil! He’s in your Intro class. He’s learning to program, too!” Joe
announced proudly.

“That’s great,” I replied. “I wonder if he could read this code.”

“No way!” said Joe. “This is hard stuff!”

“Just suppose,” I suggested, “that this was real, working code, and that in a few
years, Phil was hired to make a maintenance update. What have you done for
him?” Joe just stared at me, blinking. “We know that Phil is really smart, right?”

A Message to
the Future

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

117Collective Wisdom from the Experts

Joe nodded. “And I hate to say it, but I’m pretty smart, too!” Joe grinned. “So if
I can’t easily understand what you’ve done here and your very smart younger
brother will likely puzzle over this, what does that mean about what you’ve
written?” Joe looked at his code a little differently, it seemed to me. “How
about this,” I suggested in my best “I’m your friendly mentor” voice, “Think of
every line of code you write as a message for someone in the future—someone
who might be your younger brother. Pretend you’re explaining to this smart
person how to solve this tough problem.

“Is this what you’d like to imagine? That the smart programmer in the future
would see your code and say, ‘Wow! This is great! I can understand perfectly
what’s been done here and I’m amazed at what an elegant—no, wait—what a
beautiful piece of code this is. I’m going to show the other folks on my team.
This is a masterpiece!’

“Joe, do you think you can write code that solves this difficult problem but
will be so beautiful it will sing? Yes, just like a haunting melody. I think that
anyone who can come up with the very difficult solution you have here could
also write something beautiful. Hmm…I wonder if I should start grading on
beauty? What do you think, Joe?”

Joe picked up his work and looked at me, a little smile creeping across his face.
“I got it, prof, I’m off to make the world better for Phil. Thanks.”

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

118 97 Things Every Programmer Should Know

Missing
Opportunities for
Polymorphism
Kirk Pepperdine

POLYMORPHiSM iS ONE OF THE GRAND iDEAS that is fundamental to OO.
The word, taken from Greek, means many (poly) forms (morph). In the con-
text of programming, polymorphism refers to many forms of a particular class
of objects or method. But polymorphism isn’t simply about alternate implemen-
tations. Used carefully, polymorphism creates tiny localized execution contexts
that let us work without the need for verbose if-then-else blocks. Being in a
context allows us to do the right thing directly, whereas being outside of that
context forces us to reconstruct it so that we can then do the right thing. With
careful use of alternate implementations, we can capture context that can help
us produce less code that is more readable. This is best demonstrated with
some code, such as the following (unrealistically) simple shopping cart:

public class ShoppingCart {

private ArrayList<Item> cart = new ArrayList<Item>();

public void add(Item item) { cart.add(item); }

public Item takeNext() { return cart.remove(0); }

public boolean isEmpty() { return cart.isEmpty(); }

}

Let’s say our webshop offers items that can be downloaded and items that need
to be shipped. Let’s build another object that supports these operations:

public class Shipping {

public boolean ship(Item item, SurfaceAddress address) { ... }

public boolean ship(Item item, EMailAddress address { ... }

}

When a client has completed checkout, we need to ship the goods:
while (!cart.isEmpty()) {

shipping.ship(cart.takeNext(), ???);

}

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

119Collective Wisdom from the Experts

The ??? parameter isn’t some new fancy elvis operator; it’s asking whether I
should email or snail-mail the item. The context needed to answer this ques-
tion no longer exists. We have could captured the method of shipment in a
boolean or enum and then used an if-then-else to fill in the missing parameter.
Another solution would be to create two classes that both extend Item. Let’s
call these DownloadableItem and SurfaceItem. Now let’s write some code. I’ll pro-
mote Item to be an interface that supports a single method, ship. To ship the
contents of the cart, we will call item.ship(shipper). Classes DownloadableItem
and SurfaceItem will both implement ship:

public class DownloadableItem implements Item {

public boolean ship(Shipping shipper, Customer customer) {

shipper.ship(this, customer.getEmailAddress());

}

}

public class SurfaceItem implements Item {

public boolean ship(Shipping shipper, Customer customer) {

shipper.ship(this, customer.getSurfaceAddress());

}

}

In this example, we’ve delegated the responsibility of working with Shipping
to each Item. Since each item knows how it’s best shipped, this arrangement
allows us to get on with it without the need for an if-then-else. The code also
demonstrates a use of two patterns that often play well together: Command
and Double Dispatch. Effective use of these patterns relies on careful use of
polymorphism. When that happens, there will be a reduction in the number
of if-then-else blocks in our code.

While there are cases where it’s much more practical to use if-then-else instead
of polymorphism, it is more often the case that a more polymorphic coding style
will yield a smaller, more readable and less fragile codebase. The number of
missed opportunities is a simple count of the if-then-else statements in our code.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

120 97 Things Every Programmer Should Know

News of the
Weird: Testers Are
Your Friends
Burk Hufnagel

WHETHER THEY CALL THEMSELVES Quality Assurance or Quality Con-
trol, many programmers call them Trouble. In my experience, programmers
often have an adversarial relationship with the people who test their software.
“They’re too picky” and “They want everything perfect” are common com-
plaints. Sound familiar?

I’m not sure why, but I’ve always had a different view of testers. Maybe it’s
because the “tester” at my first job was the company secretary. Margaret was
a very nice lady who kept the office running, and tried to teach a couple of
young programmers how to behave professionally in front of customers. She
also had a gift for finding any bug, no matter how obscure, in mere moments.

Back then, I was working on a program written by an accountant who thought
he was a programmer. Needless to say, it had some serious problems. When I
thought I had a piece straightened out, Margaret would try to use it, and, more
often than not, it would fail in some new way after just a few keystrokes. It
was at times frustrating and embarrassing, but she was such a pleasant person
that I never thought to blame her for making me look bad. Eventually, the day
came when Margaret was able to cleanly start the program, enter an invoice,
print it, and shut it down. I was thrilled. Even better, when we installed it on
our customer’s machine, it all worked. They never saw any problems because
Margaret had helped me find and fix them first.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

121Collective Wisdom from the Experts

So that’s why I say testers are your friends. You may think the testers make you
look bad by reporting trivial issues. But when customers are thrilled because
they weren’t bothered by all those “little things” that QC made you fix, then
you look great. See what I mean?

Imagine this: you’re test-driving a utility that uses “groundbreaking artificial
intelligence algorithms” to find and fix concurrency problems. You fire it up
and immediately notice they misspelled “intelligence” on the splash screen. A
little inauspicious, but it’s just a typo, right? Then you notice the configuration
screen uses checkboxes where there should be radio buttons, and some of the
keyboard shortcuts don’t work. Now, none of these is a big deal, but as the
errors add up, you begin to wonder about the programmers. If they can’t get
the simple things right, what are the odds that their AI can really find and fix
something tricky like concurrency issues?

They could be geniuses who were so focused on making the AI insanely great
that they didn’t notice those trivial things, and without “picky testers” pointing
out the problems, you wound up finding them. And now you’re questioning
the competency of the programmers.

So, as strange as it may sound, those testers who seem determined to expose
every little bug in your code really are your friends.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

122 97 Things Every Programmer Should Know

One Binary
Steve Freeman

i’VE SEEN SEVERAL PROjECTS where the build rewrites some part of the
code to generate a custom binary for each target environment. This always
makes things more complicated than they should be, and introduces a risk
that the team may not have consistent versions on each installation. At a mini-
mum, it involves building multiple, near-identical copies of the software, each
of which then has to be deployed to the right place. It means more moving
parts than necessary, which means more opportunities to make a mistake.

I once worked on a team where every property change had to be checked in
for a full build cycle, so the testers were left waiting whenever they needed
a minor adjustment (did I mention that the build took too long as well?). I
also worked on a team where the system administrators insisted on rebuilding
from scratch for production (using the same scripts that we did), which meant
that we had no proof that the version in production was the one that had been
through testing. And so on.

The rule is simple: Build a single binary that you can identify and promote
through all the stages in the release pipeline. Hold environment-specific
details in the environment. This could mean, for example, keeping them in
the component container, in a known file, or in the path.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

123Collective Wisdom from the Experts

If your team either has a code-mangling build or stores all the target settings
with the code, that suggests that no one has thought through the design care-
fully enough to separate those features that are core to the application and
those that are platform-specific. Or it could be worse: the team knows what to
do but can’t prioritize the effort to make the change.

Of course, there are exceptions: you might be building for targets that have
significantly different resource constraints, but that doesn’t apply to the major-
ity of us who are writing “database to screen and back again” applications.
Alternatively, you might be living with some legacy mess that’s too hard to fix
right now. In such cases, you have to move incrementally—but start as soon
as possible.

And one more thing: keep the environment information versioned, too. There’s
nothing worse than breaking an environment configuration and not being
able to figure out what changed. The environmental information should be
versioned separately from the code, since they’ll change at different rates and
for different reasons. Some teams use distributed version control systems for
this (such as bazaar and git), since they make it easier to push changes made
in production environments—as inevitably happens—back to the repository.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

124 97 Things Every Programmer Should Know

Only the Code
Tells the Truth
Peter Sommerlad

THE ULTiMATE SEMANTiCS OF A PROGRAM is given by the running code. If
this is in binary form only, it will be a difficult read! The source code should,
however, be available if it is your program, any typical commercial software
development, an open source project, or code in a dynamically interpreted
language. When you look at the source code, the meaning of the program
should be apparent. To know what a program does, the source is ultimately all
you can be sure of looking at. Even the most accurate requirements document
does not tell the whole truth: it does not contain the detailed story of what the
program is actually doing, only the high-level intentions of the requirements
analyst. A design document may capture a planned design, but it will lack the
necessary detail of the implementation. These documents may have lost sync
with the current implementation…or may simply have been lost. Or never
written in the first place. The source code may be the only thing left.

With this in mind, ask yourself how clearly your code is telling you or any
other programmer what it is doing.

You might say, “Oh, my comments will tell you everything you need to know.”
But keep in mind that comments are not running code. They can be just as
wrong as other forms of documentation. There has been a tradition of say-
ing that comments are unconditionally a good thing, so some programmers
unquestioningly write more and more comments, even restating and explaining
trivia already obvious in the code. This is the wrong way to clarify your code.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

125Collective Wisdom from the Experts

If your code needs comments, consider refactoring it so it doesn’t. Lengthy
comments can clutter screen space and might even be hidden automatically by
your IDE. If you need to explain a change, do so in the version control system
check-in message and not in the code.

What can you do to actually make your code tell the truth as clearly as pos-
sible? Strive for good names. Structure your code with respect to cohesive
functionality, which also eases naming. Decouple your code to achieve
orthogonality. Write automated tests explaining the intended behavior and
check the interfaces. Refactor mercilessly when you learn how to code a
simpler, better solution. Make your code as simple as possible to read and
understand.

Treat your code like any other composition, such as a poem, an essay, a pub-
lic blog, or an important email. Craft what you express carefully, so that it
does what it should and communicates as directly as possible what it is doing;
so that it still communicates your intention when you are no longer around.
Remember that useful code is used much longer than ever intended. Mainte-
nance programmers will thank you. And, if you are a maintenance program-
mer and the code you are working on does not tell the truth easily, apply the
aforementioned guidelines in a proactive manner. Establish some sanity in the
code, and keep your own sanity.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

126 97 Things Every Programmer Should Know

Own (and Refactor)
the Build
Steve Berczuk

iT iS NOT UNCOMMON for teams that are otherwise highly disciplined about
coding practices to neglect build scripts, either out of a belief that they are
merely an unimportant detail or from a fear that they are complex and need to
be tended to by the cult of release engineering. Unmaintainable build scripts
with duplication and errors cause problems of the same magnitude as those in
poorly factored code.

One rationale for why disciplined, skilled developers treat the build as some-
thing secondary to their work is that build scripts are often written in a differ-
ent language than source code. Another is that the build is not really “code.”
These justifications fly in the face of the reality that most software developers
enjoy learning new languages, and that the build is what creates executable
artifacts for developers and end users to test and run. The code is useless with-
out being built, and the build is what defines the component architecture of
the application. The build is an essential part of the development process, and
decisions about the build process can make the code and the coding simpler.

Build scripts written using the wrong idioms are difficult to maintain and,
more significantly, improve. It is worth spending some time to understand
the right way to make a change. Bugs can appear when an application is built
with the wrong version of a dependency or when a build-time configuration
is wrong.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

127Collective Wisdom from the Experts

Traditionally, testing has been something that was always left to the “Quality
Assurance” team. We now realize that testing as we code is necessary to being
able to deliver value predictably. In much the same way, the build process
needs to be owned by the development team.

Understanding the build can simplify the entire development lifecycle and
reduce costs. A simple-to-execute build allows a new developer to get started
quickly and easily. Automating configuration in the build can enable you to
get consistent results when multiple people are working on a project, avoiding
an “it works for me” conversation. Many build tools allow you to run reports
on code quality, allowing you to sense potential problems early. By spending
time understanding how to make the build yours, you can help yourself and
everyone else on your team. You can focus on coding features, benefiting your
stakeholders and making work more enjoyable.

Learn enough of your build process to know when and how to make changes.
Build scripts are code. They are too important to be left to someone else, if for
no other reason than because the application is not complete until it is built. The
job of programming is not complete until we have delivered working software.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

128 97 Things Every Programmer Should Know

Pair Program and
Feel the Flow
Gudny Hauknes, Kari Røssland, and
Ann Katrin Gagnat

iMAGiNE THAT YOU ARE TOTALLY ABSORBED by what you are doing—
focused, dedicated, and involved. You may have lost track of time. You prob-
ably feel happy. You are experiencing flow. It is difficult to both achieve and
maintain flow for a whole team of developers since there are so many interrup-
tions, interactions, and other distractions that can easily break it.

If you have already practiced pair programming, you are probably familiar with
how pairing contributes to flow. If you have not, we want to use our experiences
to motivate you to start right now! To succeed with pair programming, both
individual team members and the team as a whole have to put forth some effort.

As a team member, be patient with developers less experienced than you. Con-
front your fears about being intimidated by more skilled developers. Realize
that people are different, and value it. Be aware of your own strengths and
weaknesses, as well as those of other team members. You may be surprised by
how much you can learn from your colleagues.

As a team, introduce pair programming to promote distribution of skills and
knowledge throughout the project. You should solve your tasks in pairs and
rotate pairs and tasks frequently. Agree upon a rule of rotation. Put the rule
aside or adjust it when necessary. Our experience is that you do not necessarily
need to complete a task before rotating it to another pair. Interrupting a task
to pass it to another pair may sound counterintuitive, but we have found that
it works.

There are numerous situations where flow can be broken, but where pair pro-
gramming helps you keep it:

• Reduce the “truck factor.” It’s a slightly morbid thought experiment,
but how many of your team members would have to be hit by a truck
before the team became unable to complete the final deliverable? In
other words, how dependent is your delivery on certain team members?

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

129Collective Wisdom from the Experts

Is knowledge privileged or shared? If you have been rotating tasks among
pairs, there is always someone else who has the knowledge and can com-
plete the work. Your team’s flow is not as affected by the “truck factor.”

• Solve problems effectively. If you are pair programming and you run into
a challenging problem, you always have someone to discuss it with. Such
dialog is more likely to open up possibilities than if you are stuck by your-
self. As the work rotates, your solution will be revisited and reconsidered
by the next pair, so it does not matter if you did not choose the optimal
solution initially.

• Integrate smoothly. If your current task involves calling another piece of
code, you hope the names of the methods, the docs, and the tests are
descriptive enough to give you a grasp of what it does. If not, pairing with
a developer who was involved in writing that code will give you better
overview and faster integration into your own code. Additionally, you
can use the discussion as an opportunity to improve the naming, docs,
and testing.

• Mitigate interruptions. If someone comes over to ask you a question, or
your phone rings, or you have to answer an urgent email, or you have to
attend a meeting, your pair programming partner can keep on coding.
When you return, your partner is still in the flow and you will quickly
catch up and rejoin him.

• Bring new team members up to speed quickly. With pair programming,
and a suitable rotation of pairs and tasks, newcomers quickly get to know
both the code and the other team members.

Flow makes you incredibly productive. But it is also vulnerable. Do what you
can to get it, and hold on to it when you’ve got it!

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

130 97 Things Every Programmer Should Know

Prefer Domain-
Specific Types to
Primitive Types
Einar Landre

ON SEPTEMBER 23, 1999, the $327.6 million Mars Climate Orbiter was lost
while entering orbit around Mars due to a software error back on Earth.
The error was later called the metric mix-up. The ground-station software
was working in pounds, while the spacecraft expected newtons, leading the
ground station to underestimate the power of the spacecraft’s thrusters by a
factor of 4.45.

This is one of many examples of software failures that could have been pre-
vented if stronger and more domain-specific typing had been applied. It is
also an example of the rationale behind many features in the Ada language,
one of whose primary design goals was to implement embedded safety-critical
software. Ada has strong typing with static checking for both primitive types
and user-defined types:

type Velocity_In_Knots is new Float range 0.0 .. 500.00;

type Distance_In_Nautical_Miles is new Float range 0.0 .. 3000.00;

Velocity: Velocity_In_Knots;

Distance: Distance_In_Nautical_Miles;

Some_Number: Float;

Some_Number:= Distance + Velocity; -- Will be caught by the compiler as a type error.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

131Collective Wisdom from the Experts

Developers in less demanding domains might also benefit from applying
more domain-specific typing, where they might otherwise continue to use
the primitive data types offered by the language and its libraries, such as
strings and floats. In Java, C++, Python, and other modern languages, the
abstract data type is known as class. Using classes such as Velocity_In_Knots
and Distance_In_Nautical_Miles adds a lot of value with respect to code quality:

• The code becomes more readable, as it expresses concepts of a domain,
not just Float or String.

• The code becomes more testable, as the code encapsulates behavior that
is easily testable.

• The code facilitates reuse across applications and systems.

The approach is equally valid for users of both statically and dynamically
typed languages. The only difference is that developers using statically typed
languages get some help from the compiler, while those embracing dynami-
cally typed languages are more likely to rely on their unit tests. The style of
checking may be different, but the motivation and style of expression is not.

The moral is to start exploring domain-specific types for the purpose of
developing quality software.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

132 97 Things Every Programmer Should Know

Prevent Errors
Giles Colborne

ERROR MESSAGES are the most critical interactions between the user and the
rest of the system. They happen when communication between the user and
the system is near the breaking point.

It is easy to think of an error as being caused by a wrong input from the user.
But people make mistakes in predictable, systematic ways. So it is possible to
“debug” the communication between the user and the rest of the system just as
you would between other system components.

For instance, say you want the user to enter a date within an allowed range.
Rather than letting the user enter any date, it is better to offer a device such as
a list or calendar showing only the allowed dates. This eliminates any chance
of the user entering a date outside of the range.

Formatting errors are another common problem. For instance, if a user is pre-
sented with a Date text field and enters an unambiguous date such as “July
29, 2012,” it is unreasonable to reject it simply because it is not in a preferred
format (such as “DD/MM/YYYY”). It is worse still to reject “29 / 07 / 2012”
because it contains extra spaces—this kind of problem is particularly hard for
users to understand, as the date appears to be in the desired format.

This error occurs because it is easier to reject the date than parse the three or
four most common date formats. These kinds of petty errors lead to user frus-
tration, which in turn lead to additional errors as the user loses concentration.
Instead, respect users’ preference to enter information, not data.

Another way of avoiding formatting errors is to offer cues—for instance,
with a label within the field showing the desired format (“DD/MM/YYYY”).
Another cue might be to divide the field into three text boxes of two, two, and
four characters.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

133Collective Wisdom from the Experts

Cues are different from instructions: cues tend to be hints; instructions are
verbose. Cues occur at the point of interaction; instructions appear before the
point of interaction. Cues provide context; instructions dictate use.

In general, instructions are ineffective at preventing error. Users tend to assume
that interfaces will work in line with their past experience (“Surely everyone
knows what ‘July 29, 2012’ means?”). So instructions go unread. Cues nudge
users away from errors.

Another way of avoiding errors is to offer defaults. For instance, users typically
enter values that correspond to today, tomorrow, my birthday, my deadline, or
the date I entered last time I used this form. Depending on context, one of these
is likely to be a good choice as a smart default.

Whatever the cause, systems should be tolerant of errors. You can facilitate this
by providing multiple levels of undo to all actions—and, in particular, actions
that have the potential to destroy or amend users’ data.

Logging and analyzing undo actions can also highlight where the interface
is drawing users into unconscious errors, such as persistently clicking on the
“wrong” button. These errors are often caused by misleading cues or interac-
tion sequences that you can redesign to prevent further error.

Whichever approach you take, most errors are systematic—the result of mis-
understandings between the user and the software. Understanding how users
think, interpret information, make decisions, and input data will help you
debug the interactions between your software and your users.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

134 97 Things Every Programmer Should Know

The Professional
Programmer
Robert C. Martin (Uncle Bob)

WHAT iS A PROFESSiONAL PROGRAMMER?

The single most important trait of a professional programmer is personal
responsibility. Professional programmers take responsibility for their career,
their estimates, their schedule commitments, their mistakes, and their work-
manship. A professional programmer does not pass that responsibility off on
others.

• If you are a professional, then you are responsible for your own career. You
are responsible for reading and learning. You are responsible for staying
up to date with the industry and the technology. Too many program-
mers feel that it is their employer’s job to train them. Sorry, this is just
dead wrong. Do you think doctors behave that way? Do you think law-
yers behave that way? No, they train themselves on their own time, and
their own nickel. They spend much of their off-hours reading journals
and decisions. They keep themselves up to date. And so must we. The
relationship between you and your employer is spelled out nicely in your
employment contract. In short: your employer promises to pay you, and
you promise to do a good job.

• Professionals take responsibility for the code they write. They do not release
code unless they know it works. Think about that for a minute. How can
you possibly consider yourself a professional if you are willing to release
code that you are not sure of? Professional programmers expect QA to
find nothing because they don’t release their code until they’ve thoroughly
tested it. Of course, QA will find some problems, because no one is per-
fect. But as professionals, our attitude must be that we will leave nothing
for QA to find.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

135Collective Wisdom from the Experts

• Professionals are team players. They take responsibility for the output of
the whole team, not just their own work. They help one another, teach one
another, learn from one another, and even cover for one another when
necessary. When one teammate falls down, the others step in, knowing
that one day they’ll be the ones to need cover.

• Professionals do not tolerate big bug lists. A huge bug list is sloppy. Systems
with thousands of issues in the issue-tracking database are tragedies of
carelessness. Indeed, in most projects, the very need for an issue-tracking
system is a symptom of carelessness. Only the very biggest systems should
have bug lists so long that automation is required to manage them.

• Professionals do not make a mess. They take pride in their workmanship.
They keep their code clean, well structured, and easy to read. They follow
agreed-upon standards and best practices. They never, ever rush. Imagine
that you are having an out-of-body experience watching a doctor per-
form open-heart surgery on you. This doctor has a deadline (in the literal
sense). He must finish before the heart-lung bypass machine damages too
many of your blood cells. How do you want him to behave? Do you want
him to behave like the typical software developer, rushing and making a
mess? Do you want him to say, “I’ll go back and fix this later”? Or do you
want him to hold carefully to his disciplines, taking his time, confident
that his approach is the best approach he can reasonably take. Do you
want a mess, or professionalism?

Professionals are responsible. They take responsibility for their own careers.
They take responsibility for making sure their code works properly. They
take responsibility for the quality of their workmanship. They do not aban-
don their principles when deadlines loom. Indeed, when the pressure
mounts, professionals hold ever tighter to the disciplines they know are right.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

136 97 Things Every Programmer Should Know

Put Everything
Under Version
Control
Diomidis Spinellis

PUT EVERYTHiNG iN ALL YOUR PROjECTS UNDER VERSiON CONTROL.

The resources you need are there: free tools like Subversion, Git, Mercurial,
and CVS; plentiful disk space; cheap and powerful servers; ubiquitous net-
working; and even project-hosting services. After you’ve installed the version
control software, all you need in order to put your work in its repository is
to issue the appropriate command in a clean directory containing your code.
And there are just two new basic operations to learn: you commit your code
changes to the repository and you update your working version of the project
with the repository’s version.

Once your project is under version control, you can obviously track its his-
tory, see who wrote what code, and refer to a file or project version through a
unique identifier. More importantly, you can make bold code changes without
fear—no more commented-out code just in case you need it in the future,
because the old version lives safely in the repository. You can (and should) tag
a software release with a symbolic name so that you can easily revisit in the
future the exact version of the software your customer runs. You can create
branches of parallel development: most projects have an active development
branch and one or more maintenance branches for released versions that are
actively supported.

A version control system minimizes friction among developers. When pro-
grammers work on independent software parts, these get integrated almost by
magic. When they step on one another’s toes, the system notices and allows
them to sort out the conflicts. With some additional setup, the system can
notify all developers for each committed change, establishing a common
understanding of the project’s progress.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

137Collective Wisdom from the Experts

When you set up your project, don’t be stingy: place all the project’s assets
under version control. In addition to the source code, include the documenta-
tion, tools, build scripts, test cases, artwork, and even libraries. With the com-
plete project safely tucked into the (regularly backed up) repository, the potential
damage of losing your disk or data is minimized. Setting up for development
on a new machine involves simply checking out the project from the reposi-
tory. This simplifies distributing, building, and testing the code on different
platforms: on each machine, a single update command will ensure that the
software is the current version.

Once you’ve seen the beauty of working with a version control system, follow-
ing a couple of rules will make you and your team even more effective:

• Commit each logical change in a separate operation. Lumping many changes
together in a single commit will make it difficult to disentangle them in the
feature. This is especially important when you make project-wide refactor-
ings or style changes, which can easily obscure other modifications.

• Accompany each commit with an explanatory message. At a minimum,
describe succinctly what you’ve changed, but if you also want to record
the change’s rationale, this is the best place to store it.

• Finally, avoid committing code that will break a project’s build, otherwise
you’ll become unpopular with the project’s other developers.

Life under a version control system is too good to ruin it with easily avoidable
missteps.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

138 97 Things Every Programmer Should Know

Put the Mouse Down
and Step Away
from the Keyboard
Burk Hufnagel

YOU’VE BEEN FOCUSED FOR HOURS on some gnarly problem, and there’s
no solution in sight. So you get up to stretch your legs or to hit the vending
machines and, on the way back, the answer suddenly becomes obvious.

Does this scenario sound familiar? Ever wonder why it happens? The trick is
that while you’re coding, the logical part of your brain is active and the creative
side is shut out. It can’t present anything to you until the logical side takes a
break.

Here’s a real-life example: I was cleaning up some legacy code and ran into an
“interesting” method. It was designed to verify that a string contained a valid
time using the format hh:mm:ss xx, where hh represents the hour, mm repre-
sents minutes, ss represents seconds, and xx is either AM or PM.

The method used the following code to convert two characters (representing
the hour) into a number, and verify it was within the proper range:

try {

Integer.parseInt(time.substring(0, 2));

} catch (Exception x) {

return false;

}

if (Integer.parseInt(time.substring(0, 2)) > 12) {

return false;

}

The same code appeared twice more, with appropriate changes to the charac-
ter offset and upper limit, to test the minutes and seconds. The method ended
with these lines to check for AM and PM:

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

139Collective Wisdom from the Experts

if (!time.substring(9, 11).equals("AM") &

!time.substring(9, 11).equals("PM")) {

return false;

}

If none of this series of comparisons failed, returning false, the method
returned true.

If the preceding code seems wordy and difficult to follow, don’t worry. I
thought so, too—which meant I’d found something worth cleaning up. I refac-
tored it and wrote a few unit tests, just to make sure it still worked.

When I finished, I felt pleased with the results. The new version was easy to
read, half the size, and more accurate because the original code tested only the
upper boundary for the hours, minutes, and seconds.

While getting ready for work the next day, an idea popped in my head: why not
validate the string using a regular expression? After a few minutes of typing, I
had a working implementation in just one line of code. Here it is:

public static boolean validateTime(String time) {

return time.matches("(0[1-9]|1[0-2]):[0-5][0-9]:[0-5][0-9] ([AP]M)");

}

The point of this story is not that I eventually replaced over 30 lines of code
with just one. The point is that until I got away from the computer, I thought
my first attempt was the best solution to the problem.

So, the next time you hit a nasty problem, do yourself a favor. Once you really
understand the problem, go do something involving the creative side of your
brain—sketch out the problem, listen to some music, or just take a walk out-
side. Sometimes the best thing you can do to solve a problem is to put the
mouse down and step away from the keyboard.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

140 97 Things Every Programmer Should Know

Read Code
Karianne Berg

WE PROGRAMMERS ARE WEiRD CREATURES. We love writing code. But
when it comes to reading it, we usually shy away. After all, writing code is
so much more fun, and reading code is hard—sometimes almost impossible.
Reading other people’s code is particularly hard. Not necessarily because other
people’s code is bad, but because they probably think and solve problems in a
different way than you. But did you ever consider that reading someone else’s
code could improve your own?

The next time you read some code, stop and think for a moment. Is the code
easy or hard to read? If it is hard to read, why is that? Is the formatting poor?
Is naming inconsistent or illogical? Are several concerns mixed together in the
same piece of code? Perhaps the choice of language prohibits the code from
being readable. Try to learn from other people’s mistakes, so that your code
won’t contain the same ones. You may receive a few surprises. For example,
dependency-breaking techniques may be good for low coupling, but they can
sometimes also make code harder to read. And what some people call elegant
code, others call unreadable.

If the code is easy to read, stop to see if there is something useful you can learn
from it. Maybe there’s a design pattern in use that you don’t know about, or
had previously struggled to implement. Perhaps the methods are shorter and
their names more expressive than yours. Some open source projects are full of
good examples of how to write brilliant, readable code—while others serve as
examples of the exact opposite! Check out some of their code and take a look.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

141Collective Wisdom from the Experts

Reading your own old code, from a project you are not currently working on,
can also be an enlightening experience. Start with some of your oldest code
and work your way forward to the present. You will probably find that it is
not at all as easy to read as when you wrote it. Your early code may also have
a certain embarrassing entertainment value, kind of in the same way as being
reminded of all the things you said when you were drinking in the pub last
night. Look at how you have developed your skills over the years—it can be
truly motivating. Observe what areas of the code are hard to read, and con-
sider whether you are still writing code in the same way today.

So, the next time you feel the need to improve your programming skills, don’t
read another book. Read code.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

142 97 Things Every Programmer Should Know

Read the
Humanities
Keith Braithwaite

iN ALL BUT THE SMALLEST DEVELOPMENT PROjECT, people work with
people. In all but the most abstracted field of research, people write software
for people to support them in some goal of theirs. People write software with
people for people. It’s a people business. Unfortunately, what is taught to pro-
grammers too often equips them very poorly to deal with people they work for
and with. Luckily, there is an entire field of study that can help.

For example, Ludwig Wittgenstein makes a very good case in Philosophical
Investigations (Wiley-Blackwell), and elsewhere, that any language we use to
speak to one another is not—cannot be—a serialization format for getting a
thought or idea or picture out of one person’s head and into another’s. Already,
we should be on our guard against misunderstanding when we “gather require-
ments.” Wittgenstein also shows that our ability to understand one another at
all does not arise from shared definitions, it arises from a shared experience,
from a form of life. This may be one reason why programmers who are steeped
in their problem domain tend to do better than those who stand apart from it.

Lakoff and Johnson present us with a catalog of Metaphors We Live By (Uni-
versity of Chicago Press), suggesting that language is largely metaphorical, and
that these metaphors offer an insight into how we understand the world. Even
seemingly concrete terms like cash flow, which we might encounter in talk-
ing about a financial system, can be seen as metaphorical: “money is a fluid.”
How does that metaphor influence the way we think about systems that handle
money? Or we might talk about layers in a stack of protocols, with some high
level and some low level. This is powerfully metaphorical: the user is “up” and
the technology is “down.” This exposes our thinking about the structure of the
systems we build. It can also mark a lazy habit of thought that we might benefit
from breaking from time to time.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

143Collective Wisdom from the Experts

Martin Heidegger studied closely the ways that people experience tools. Pro-
grammers build and use tools, we think about and create and modify and
recreate tools. Tools are objects of interest to us. But for its users, as Heiddeger
shows in Being and Time (Harper Perennial), a tool becomes an invisible thing
understood only in use. For users, tools only become objects of interest when
they don’t work. This difference in emphasis is worth bearing in mind whenever
usability is under discussion.

Eleanor Rosch overturned the Aristotelean model of the categories by which
we organize our understanding of the world. When programmers ask users
about their desires for a system, we tend to ask for definitions built out of
predicates. This is very convenient for us. The terms in the predicates can very
easily become attributes on a class or columns in a table. These sorts of catego-
ries are crisp, disjoint, and tidy. Unfortunately, as Rosch showed in “Natural
Categories”* and later works, that just isn’t how people in general understand
the world. They understand it in ways that are based on examples. Some exam-
ples, so-called prototypes, are better than others and so the resulting categories
are fuzzy, they overlap, they can have rich internal structure. Insofar as we
insist on Aristotelean answers, we can’t ask users the right questions about the
user’s world, and will struggle to come to the common understanding we need.

* Cognitive Psychology 4: 328–50 (1973)

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

144 97 Things Every Programmer Should Know

Reinvent the
Wheel Often
Jason P. Sage

Just use something that exists—it’s silly to reinvent the wheel.…

HAVE YOU EVER HEARD THiS OR SOME VARiATiON THEREOF? Sure you
have! Every developer and student probably hears comments like this fre-
quently. Why, though? Why is reinventing the wheel so frowned upon?
Because, more often than not, existing code is working code. It has already
gone through some sort of quality control and rigorous testing, and is being
used successfully. Additionally, the time and effort invested in reinvention are
unlikely to pay off as well as using an existing product or codebase. Should you
bother reinventing the wheel? Why? When?

Perhaps you have seen publications about patterns in software development,
or books on software design. These books can be sleepers, regardless of how
wonderful the information contained in them is. The same way that watching
a movie about sailing is very different from going sailing, so too is using exist-
ing code versus designing your own software from the ground up, testing it,
breaking it, repairing it, and improving it along the way.

Reinventing the wheel is not just an exercise in where to place code constructs: it
is about how to get an intimate knowledge of the inner workings of various com-
ponents that already exist. Do you know how memory managers work? Virtual
paging? Could you implement these yourself? How about double-linked lists?
Dynamic array classes? ODBC clients? Could you write a graphical user inter-
face that works like a popular one you know and like? Can you create your
own web-browser widgets? Do you know when to write a multiplexed system
versus a multithreaded one? How to decide between a file- or a memory-based
database?

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

145Collective Wisdom from the Experts

Most developers simply have never created these types of core software imple-
mentations themselves and therefore do not have an intimate knowledge of
how they work. The consequence is that all these kinds of software are viewed
as mysterious black boxes that just work. Understanding only the surface of
the water is not enough to reveal the hidden dangers beneath. Not knowing
the deeper things in software development will limit your ability to create
stellar work.

Reinventing the wheel and getting it wrong is more valuable than nailing it first
time. There are lessons learned from trial and error that have an emotional
component to them that reading a technical book alone just cannot deliver!

Learned facts and book smarts are crucial, but becoming a great programmer is
as much about acquiring experience as it is about collecting facts. Reinventing
the wheel is as important to a developer’s education and skill as weightlifting is
to a body builder.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

146 97 Things Every Programmer Should Know

Resist the
Temptation of the
Singleton Pattern
Sam Saariste

THE SiNGLETON PATTERN SOLVES MANY OF YOUR PROBLEMS. You know
that you only need a single instance. You have a guarantee that this instance
is initialized before it’s used. It keeps your design simple by having a global
access point. It’s all good. What’s not to like about this classic design pattern?

Quite a lot, it turns out. Tempting they may be, but experience shows that most
singletons really do more harm than good. They hinder testability and harm
maintainability. Unfortunately, this additional wisdom is not as widespread as
it should be, and singletons continue to be irresistible to many programmers.
But they are worth resisting:

• The single-instance requirement is often imagined. In many cases, it’s pure
speculation that no additional instances will be needed in the future.
Broadcasting such speculative properties across an application’s design
is bound to cause pain at some point. Requirements will change. Good
design embraces this. Singletons don’t.

• Singletons cause implicit dependencies between conceptually independent
units of code. This is problematic both because they are hidden and because
they introduce unnecessary coupling between units. This code smell
becomes pungent when you try to write unit tests, which depend on loose
coupling and the ability to selectively substitute a mock implementation for
a real one. Singletons prevent such straightforward mocking.

• Singletons also carry implicit persistent state, which again hinders unit
testing. Unit testing depends on tests being independent of one another,
so the tests can be run in any order and the program can be set to a known
state before the execution of every unit test. Once you have introduced
singletons with mutable state, this may be hard to achieve. In addition,
such globally accessible persistent state makes it harder to reason about
the code, especially in a multithreaded environment.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

147Collective Wisdom from the Experts

• Multithreading introduces further pitfalls to the singleton pattern. As straight-
forward locking on access is not very efficient, the so-called double-checked
locking pattern (DCLP) has gained in popularity. Unfortunately, this may
be a further form of fatal attraction. It turns out that in many languages,
DCLP is not thread-safe and, even where it is, there are still opportunities
to get it subtly wrong.

The cleanup of singletons may present a final challenge:

• There is no support for explicitly killing singletons. This can be a serious issue
in some contexts—for example, in a plug-in architecture where a plug-in
can only be safely unloaded after all its objects have been cleaned up.

• There is no order to the implicit cleanup of singletons at program exit.
This can be troublesome for applications that contain singletons with
interdependencies. When shutting down such applications, one single-
ton may access another that has already been destroyed.

Some of these shortcomings can be overcome by introducing additional
mechanisms. However, this comes at the cost of additional complexity in code
that could have been avoided by choosing an alternative design.

Therefore, restrict your use of the Singleton pattern to the classes that truly
must never be instantiated more than once. Don’t use a singleton’s global access
point from arbitrary code. Instead, direct access to the singleton should come
from only a few well-defined places, from where it can be passed around via its
interface to other code. This other code is unaware, and so does not depend on
whether a singleton or any other kind of class implements the interface. This
breaks the dependencies that prevented unit testing and improves the main-
tainability. So, the next time you are thinking about implementing or accessing
a singleton, I hope you’ll pause and think again.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

148 97 Things Every Programmer Should Know

The Road to Performance
Is Littered with Dirty
Code Bombs
Kirk Pepperdine

MORE OFTEN THAN NOT, performance tuning a system requires you to alter
code. When we need to alter code, every chunk that is overly complex or
highly coupled is a dirty code bomb lying in wait to derail the effort. The first
casualty of dirty code will be your schedule. If the way forward is smooth, it
will be easy to predict when you’ll finish. Unexpected encounters with dirty
code will make it very difficult to make a sane prediction.

Consider the case where you find an execution hot spot. The normal course
of action is to reduce the strength of the underlying algorithm. Let’s say you
respond to your manager’s request for an estimate with an answer of 3–4 hours.
As you apply the fix, you quickly realize that you’ve broken a dependent part.
Since closely related things are often necessarily coupled, this breakage is most
likely expected and accounted for. But what happens if fixing that dependency
results in other dependent parts breaking? Furthermore, the farther away the
dependency is from the origin, the less likely you are to recognize it as such and
account for it in your estimate. All of a sudden, your 3–4-hour estimate can eas-
ily balloon to 3–4 weeks. Often, this unexpected inflation in the schedule hap-
pens one or two days at a time. It is not uncommon to see “quick” refactorings
eventually taking several months to complete. In these instances, the damage to
the credibility and political capital of the responsible team will range from severe
to terminal. If only we had a tool to help us identify and measure this risk.…

In fact, we have many ways of measuring and controlling the degree and depth
of coupling and complexity of our code. Software metrics can be used to count
the occurrences of specific features in our code. The values of these counts do

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

149Collective Wisdom from the Experts

correlate with code quality. Two of a number of metrics that measure coupling
are fan-in and fan-out. Consider fan-out for classes: it is defined as the number
of classes referenced either directly or indirectly from a class of interest. You
can think of this as a count of all the classes that must be compiled before your
class can be compiled. Fan-in, on the other hand, is a count of all classes that
depend upon the class of interest. Knowing fan-out and fan-in, we can calcu-
late an instability factor using I = fo / (fi + fo). As I approaches 0, the package
becomes more stable. As I approaches 1, the package becomes unstable. Pack-
ages that are stable are low-risk targets for recoding, whereas unstable packages
are more likely to be filled with dirty code bombs. The goal in refactoring is to
move I closer to 0.

When using metrics, one must remember that they are only rules of thumb.
Based purely on math, we can see that increasing fi without changing fo will
move I closer to 0. There is, however, a downside to a very large fan-in value:
these classes will be more difficult to alter without breaking dependents. Also,
without addressing fan-out, you’re not really reducing your risks, so some balance
must be applied.

One downside to software metrics is that the huge array of numbers that met-
rics tools produce can be intimidating to the uninitiated. That said, software
metrics can be a powerful tool in our fight for clean code. They can help us
to identify and eliminate dirty code bombs before they are a serious risk to a
performance-tuning exercise.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

150 97 Things Every Programmer Should Know

Simplicity Comes
from Reduction
Paul W. Homer

“DO iT AGAiN…,” my boss told me as his finger pressed hard on the Delete key.
I watched the computer screen with an all-too-familiar sinking feeling, as my
code—line after line—disappeared into oblivion.

My boss, Stefan, wasn’t always the most vocal of people, but he knew bad code
when he saw it. And he knew exactly what to do with it.

I had arrived in my present position as a student programmer with lots of
energy and plenty of enthusiasm but absolutely no idea how to code. I had this
horrible tendency to think that the solution to every problem was to add in
another variable some place. Or throw in another line. On a bad day, instead of
the logic getting better with each revision, my code gradually got larger, more
complex, and further away from working consistently.

It’s natural, particularly when you’re in a rush, to just want to make the most
minimal changes to an existing block of code, even if it is awful. Most pro-
grammers will preserve bad code, fearing that starting anew will require sig-
nificantly more effort than just going back to the beginning. That can be true
for code that is close to working, but there is just some code that is beyond all
help.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

151Collective Wisdom from the Experts

More time gets wasted in trying to salvage bad work than it should. Once
something becomes a resource sink, it needs to be discarded. Quickly.

Not that one should easily toss away all of that typing, naming, and formatting.
My boss’s reaction was extreme, but it did force me to rethink the code on the
second (or occasionally third) attempt. Still, the best approach to fixing bad
code is to flip into a mode where the code is mercilessly refactored, shifted
around, or deleted.

The code should be simple. There should be a minimal number of variables,
functions, declarations, and other syntactic language necessities. Extra lines,
extra variables…extra anything, really, should be purged immediately. What’s
there, what’s left, should be just enough to get the job done, completing the
algorithm or performing the calculations. Anything and everything else is just
extra, unwanted noise, introduced accidentally, obscuring the flow, and hiding
the important stuff.

Of course, if that doesn’t do it, then just delete it all and type it in over again.
Drawing from one’s memory in that way can often help cut through a lot of
unnecessarily clutter.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

152 97 Things Every Programmer Should Know

The Single
Responsibility
Principle
Robert C. Martin (Uncle Bob)

ONE OF THE MOST FOUNDATiONAL PRiNCiPLES OF GOOD DESiGN iS:

Gather together those things that change for the same reason, and separate those
things that change for different reasons.

This principle is often known as the single responsibility principle, or SRP. In
short, it says that a subsystem, module, class, or even a function, should not
have more than one reason to change. The classic example is a class that has
methods that deal with business rules, reports, and databases:

public class Employee {

public Money calculatePay() ...

public String reportHours() ...

public void save() ...

}

Some programmers might think that putting these three functions together
in the same class is perfectly appropriate. After all, classes are supposed to
be collections of functions that operate on common variables. However, the
problem is that the three functions change for entirely different reasons. The
calculatePay function will change whenever the business rules for calculating
pay do. The reportHours function will change whenever someone wants a dif-
ferent format for the report. The save function will change whenever the DBAs
change the database schema. These three reasons to change combine to make
Employee very volatile. It will change for any of those reasons. More importantly,
any classes that depend upon Employee will be affected by those changes.

Good system design means that we separate the system into components that
can be independently deployed. Independent deployment means that if we
change one component, we do not have to redeploy any of the others. However,
if Employee is used heavily by many other classes in other components, then every
change to Employee is likely to cause the other components to be redeployed,

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

153Collective Wisdom from the Experts

thus negating a major benefit of component design (or SOA, if you prefer the
trendier name). The following simple partitioning resolves the issues:

public class Employee {

public Money calculatePay() ...

}

public class EmployeeReporter {

public String reportHours(Employee e) ...

}

public class EmployeeRepository {

public void save(Employee e) ...

}

Each class can be placed in a component of its own. Or rather, all the reporting
classes can go into the reporting component. All the database-related classes
can go into the repository component. And all the business rules can go into
the business rule component.

The astute reader will see that there are still dependencies in the above solution.
That Employee is still depended upon by the other classes. So if Employee is modi-
fied, the other classes will likely have to be recompiled and redeployed. Thus,
Employee cannot be modified and then independently deployed. However, the
other classes can be modified and independently deployed. No modification of
one of them can force any of the others to be recompiled or redeployed. Even
Employee could be independently deployed through a careful use of the depen-
dency inversion principle (DIP), but that’s a topic for a different book.*

Careful application of the SRP, separating things that change for different
reasons, is one of the keys to creating designs that have an independently
deployable component structure.

* http://www.amazon.com/dp/0135974445/

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.amazon.com/dp/0135974445/

154 97 Things Every Programmer Should Know

Start from Yes
Alex Miller

RECENTLY, i WAS AT A GROCERY STORE, searching high and low for “edam-
ame” (which I only vaguely knew was some kind of a vegetable). I wasn’t sure
whether this was something I’d find in the vegetable section, the frozen sec-
tion, or in a can. I gave up and tracked down an employee to help me out. She
didn’t know, either!

The employee could have responded in many different ways. She could have
made me feel ignorant for not knowing where to look, or given me vague pos-
sibilities, or even just told me they didn’t have the item. But instead, she treated
the request as an opportunity to find a solution and help a customer. She called
other employees and within minutes had guided me to the exact item, nestled
in the frozen section.

The employee in this case looked at a request and started from the premise
that we would solve the problem and satisfy the request. She started from yes
instead of starting from no.

When I was first placed in a technical leadership role, I felt that my job was to
protect my beautiful software from the ridiculous stream of demands coming
from product managers and business analysts. I started most conversations
seeing a request as something to defeat, not something to grant.

At some point, I had an epiphany that maybe there was a different way to work
that merely involved shifting my perspective from starting at no to starting at
yes. In fact, I’ve come to believe that starting from yes is actually an essential
part of being a technical leader.

This simple change radically altered how I approached my job. As it turns
out, there are a lot of ways to say yes. When someone says to you, “Hey, this

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

155Collective Wisdom from the Experts

app would really be the bee’s knees if we made all the windows round and
translucent!”, you could reject it as ridiculous. But it’s frequently better to start
with “Why?” instead. Often, there is some actual and compelling reason why
that person is asking for round, translucent windows in the first place. For
example, you may be just about to sign a big, new customer with a standards
committee that mandates round, translucent windows.

Usually, you’ll find that when you know the context of the request, new pos-
sibilities open up. It’s common for the request to be accomplished with the
existing product in some other way, allowing you to say yes with no work at
all: “Actually, in the user preferences, you can download the round, translucent
windows skin and turn it on.”

Sometimes the other person will simply have an idea that you find incom-
patible with your view of the product. I find it’s usually helpful to turn that
“Why?” on yourself. Sometimes the act of voicing the reason will make it clear
that your first reaction doesn’t make sense. If not, you might need to kick it up
a notch and bring in other key decision makers. Remember, the goal of all of
this is to say yes to the other person and try to make it work, not just for him
but for you and your team as well.

If you can voice a compelling explanation as to why the feature request is
incompatible with the existing product, then you are likely to have a produc-
tive conversation about whether you are building the right product. Regardless
of how that conversation concludes, everyone will focus more sharply on what
the product is, and what it is not.

Starting from yes means working with your colleagues, not against them.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

156 97 Things Every Programmer Should Know

Step Back and
Automate, Automate,
Automate
Cay Horstmann

i WORKED WiTH PROGRAMMERS WHO, when asked to produce a count of
the lines of code in a module, pasted the files into a word processor and used
its “line count” feature. And they did it again next week. And the week after.
It was bad.

I worked on a project that had a cumbersome deployment process, involving
code signing and moving the result to a server, requiring many mouse clicks.
Someone automated it, and the script ran hundreds of times during final test-
ing, far more often than anticipated. It was good.

So, why do people do the same task over and over instead of stepping back and
taking the time to automate it?

Common misconception #1: Automation is only for testing
Sure, test automation is great, but why stop there? Repetitive tasks abound
in any project: version control, compiling, building JAR files, documenta-
tion generation, deployment, and reporting. For many of these tasks, the
script is mightier than the mouse. Executing tedious tasks becomes faster
and more reliable.

Common misconception #2: I have an IDE, so I don’t have to automate
Did you ever have a “But it (checks out/builds/passes tests) on my
machine?” argument with your teammates? Modern IDEs have thousands
of potential settings, and it is essentially impossible to ensure that all team
members have identical configurations. Build automation systems such as
Ant or Autotools give you control and repeatability.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

157Collective Wisdom from the Experts

Common misconception #3: I need to learn exotic tools in order to automate
You can go a long way with a decent shell language (such as bash or Power-
Shell) and a build automation system. If you need to interact with websites,
use a tool such as iMacros or Selenium.

Common misconception #4: I can’t automate this task because I can’t deal with
these file formats

If a part of your process requires Word documents, spreadsheets, or
images, it may indeed be challenging to automate it. But is that really nec-
essary? Can you use plain text? Comma-separated values? XML? A tool
that generates a drawing from a text file? Often, a slight tweak in the pro-
cess can yield good results with a dramatic reduction in tediousness.

Common misconception #5: I don’t have the time to figure it out
You don’t have to learn all of bash or Ant to get started. Learn as you go.
When you have a task that you think can and should be automated, learn
just enough about your tools to do it. And do it early in a project when
time is usually easier to find. Once you have been successful, you (and
your boss) will see that it makes sense to invest in automation.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

158 97 Things Every Programmer Should Know

Take Advantage of
Code Analysis Tools
Sarah Mount

THE VALUE OF TESTiNG is something that is drummed into software devel-
opers from the early stages of their programming journey. In recent years, the
rise of unit testing, test-driven development, and agile methods has attested to
a surge of interest in making the most of testing throughout all phases of the
development cycle. However, testing is just one of many tools that you can use
to improve the quality of code.

Back in the mists of time, when C was still a new phenomenon, CPU time and
storage of any kind were at a premium. The first C compilers were mindful of
this and so cut down on the number of passes through the code they made
by removing some semantic analyses. This meant that the compiler checked
for only a small subset of the bugs that could be detected at compile time.
To compensate, Stephen Johnson wrote a tool called lint—which removes the
fluff from your code—that implemented some of the static analyses that had
been removed from its sister C compiler. Static analysis tools, however, gained
a reputation for giving large numbers of false-positive warnings and warnings
about stylistic conventions that aren’t always necessary to follow.

The current landscape of languages, compilers, and static analysis tools is very
different. Memory and CPU time are now relatively cheap, so compilers can
afford to check for more errors. Almost every language boasts at least one tool
that checks for violations of style guides, common gotchas, and sometimes cun-
ning errors that can be hard to catch, such as potential null pointer dereferences.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

159Collective Wisdom from the Experts

The more sophisticated tools, such as Splint for C or Pylint for Python, are
configurable, meaning that you can choose which errors and warnings the tool
emits with a configuration file, via command-line switches, or in your IDE.
Splint will even let you annotate your code in comments to give it better hints
about how your program works.

If all else fails, and you find yourself looking for simple bugs or standards vio-
lations that are not caught by your compiler, IDE, or lint tools, then you can
always roll your own static checker. This is not as difficult as it might sound.
Most languages, particularly ones branded dynamic, expose their abstract syn-
tax tree and compiler tools as part of their standard library. It is well worth
getting to know the dusty corners of standard libraries that are used by the
development team of the language you are using, as these often contain hid-
den gems that are useful for static analysis and dynamic testing. For example,
the Python standard library contains a disassembler which tells you the byte-
code used to generate some compiled code or code object. This sounds like
an obscure tool for compiler writers on the python-dev team, but it is actually
surprisingly useful in everyday situations. One thing this library can disassemble
is your last stack trace, giving you feedback on exactly which bytecode instruc-
tion threw the last uncaught exception.

So, don’t let testing be the end of your quality assurance—take advantage of
analysis tools, and don’t be afraid to roll your own.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

160 97 Things Every Programmer Should Know

Test for Required
Behavior, Not
Incidental Behavior
Kevlin Henney

A COMMON PiTFALL iN TESTiNG is to assume that exactly what an imple-
mentation does is precisely what you want to test for. At first glance, this
sounds more like a virtue than a pitfall. Phrased another way, however, the
issue becomes more obvious: a common pitfall in testing is to hardwire tests
to the specifics of an implementation, where those specifics are incidental and
have no bearing on the desired functionality.

When tests are hardwired to implementation incidentals, changes to the imple-
mentation that are actually compatible with the required behavior may cause
tests to fail, leading to false positives. Programmers typically respond either
by rewriting the test or by rewriting the code. Assuming that a false positive is
actually a true positive is often a consequence of fear, uncertainty, or doubt. It
has the effect of raising the status of incidental behavior to required behavior.
In rewriting a test, programmers either refocus the test on the required behav-
ior (good) or simply hardwire it to the new implementation (not good). Tests
need to be sufficiently precise, but they also need to be accurate.

For example, in a three-way comparison, such as Java’s String.compareTo or C’s
strcmp, the requirements on the result are that it is negative if the lefthand side
is less than the right, positive if the lefthand side is greater than the right, and
zero if they are considered equal. This style of comparison is used in many
APIs, including the comparator for C’s qsort function and compareTo in Java’s
Comparable interface. Although the specific values –1 and +1 are commonly used

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

161Collective Wisdom from the Experts

in implementations to signify less than and greater than, respectively, program-
mers often mistakenly assume that these values represent the actual requirement
and consequently write tests that nail this assumption up in public.

A similar issue arises with tests that assert spacing, precise wording, and other
aspects of textual formatting and presentation that are incidental. Unless you
are writing, for example, an XML generator that offers configurable format-
ting, spacing should not be significant to the outcome. Likewise, hardwiring
placement of buttons and labels on UI controls reduces the option to change
and refine these incidentals in the future. Minor changes in implementation
and inconsequential changes in formatting suddenly become build breakers.

Overspecified tests are often a problem with whitebox approaches to unit test-
ing. Whitebox tests use the structure of the code to determine the test cases
needed. The typical failure mode of whitebox testing is that the tests end
up asserting that the code does what the code does. Simply restating what
is already obvious from the code adds no value and leads to a false sense of
progress and security.

To be effective, tests need to state contractual obligations rather than par-
rot implementations. They need to take a blackbox view of the units under
test, sketching out the interface contracts in executable form. Therefore, align
tested behavior with required behavior.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

162 97 Things Every Programmer Should Know

Test Precisely
and Concretely
Kevlin Henney

iT iS iMPORTANT TO TEST for the desired, essential behavior of a unit of code,
rather than for the incidental behavior of its particular implementation. But
this should not be taken or mistaken as an excuse for vague tests. Tests need to
be both accurate and precise.

Something of a tried, tested, and testing classic, sorting routines offer an illus-
trative example. Implementing a sorting algorithm is not necessarily an every-
day task for a programmer, but sorting is such a familiar idea that most people
believe they know what to expect from it. This casual familiarity, however, can
make it harder to see past certain assumptions.

When programmers are asked, “What would you test for?”, by far and away
the most common response is something like, “The result of sorting is a sorted
sequence of elements.” While this is true, it is not the whole truth. When
prompted for a more precise condition, many programmers add that the result-
ing sequence should be the same length as the original. Although correct, this is
still not enough. For example, given the following sequence:

3 1 4 1 5 9

The following sequence satisfies a postcondition of being sorted in non-
descending order and having the same length as the original sequence:

3 3 3 3 3 3

Although it satisfies the spec, it is also most certainly not what was meant!
This example is based on an error taken from real production code (fortu-
nately caught before it was released), where a simple slip of a keystroke or a
momentary lapse of reason led to an elaborate mechanism for populating the
whole result with the first element of the given array.

The full postcondition is that the result is sorted and that it holds a permuta-
tion of the original values. This appropriately constrains the required behavior.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

163Collective Wisdom from the Experts

That the result length is the same as the input length comes out in the wash
and doesn’t need restating.

Even stating the postcondition in the way described is not enough to give you a
good test. A good test should be readable. It should be comprehensible and simple
enough that you can see readily that it is correct (or not). Unless you already have
code lying around for checking that a sequence is sorted and that one sequence
contains a permutation of values in another, it is quite likely that the test code will
be more complex than the code under test. As Tony Hoare observed:

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies and the other is to make it so com-
plicated that there are no obvious deficiencies.

Using concrete examples eliminates this accidental complexity and opportu-
nity for accident. For example, given the following sequence:

3 1 4 1 5 9

The result of sorting is the following:
1 1 3 4 5 9

No other answer will do. Accept no substitutes.

Concrete examples help to illustrate general behavior in an accessible and
unambiguous way. The result of adding an item to an empty collection is not
simply that it is not empty: it is that the collection now has a single item, and that
the single item held is the item added. Two or more items would qualify as not
empty, and would also be wrong. A single item of a different value would also be
wrong. The result of adding a row to a table is not simply that the table is one row
bigger; it’s also that the row’s key can be used to recover the row added. And so on.

In specifying behavior, tests should not simply be accurate: they must also be precise.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

164 97 Things Every Programmer Should Know

Test While You
Sleep (and over
Weekends)
Rajith Attapattu

RELAx. I am not referring to offshore development centers, overtime on week-
ends, or working the night shift. Rather, I want to draw your attention to how
much computing power we have at our disposal. Specifically, how much we
are not harnessing to make our lives as programmers a little easier. Are you
constantly finding it difficult to get enough computing power during the work
day? If so, what are your test servers doing outside of normal work hours?
More often than not, the test servers are idling overnight and over the week-
end. You can use this to your advantage.

• Have you been guilty of committing a change without running all the
tests? One of the main reasons programmers don’t run test suites before
committing code is because of the length of time they may take. When
deadlines are looming and push comes to shove, humans naturally start
cutting corners. One way to address this is to break down your large test
suite into two or more profiles. A smaller, mandatory test profile that is
quick to run will help to ensure that tests are run before each commit.
All of the test profiles (including the mandatory profile—just to be sure)
can be automated to run overnight, ready to report their results in the
morning.

• Have you had enough opportunity to test the stability of your product?
Longer-running tests are vital for identifying memory leaks and other
stability issues. They are seldom run during the day, as it will tie up time
and resources. You could automate a soak test to be run during the night,
and a bit longer over the weekend. From 6:00 PM Friday to 6:00 AM the
following Monday, there are 60 hours’ worth of potential testing time.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

165Collective Wisdom from the Experts

• Are you getting quality time on your performance testing environment? I
have seen teams bickering with each other to get time on the performance
testing environment. In most cases, neither team gets enough quality
time during the day, while the environment is virtually idle after hours.
The servers and the network are not as busy during the night or over the
weekend. It’s an ideal time to run some quality performance tests.

• Are there too many permutations to test manually? In many cases, your
product is targeted to run on a variety of platforms. For example, both
32-bit and 64-bit, on Linux, Solaris, and Windows, or simply on differ-
ent versions of the same operating system. To make matters worse, many
modern applications expose themselves to a plethora of transport mech-
anisms and protocols (HTTP, AMQP, SOAP, CORBA, etc.). Manually
testing all of these permutations is very time consuming and most likely
done close to a release due to resource pressure. Alas, it may be too late in
the cycle to catch certain nasty bugs.

Automated tests run during the night or over weekends will ensure that all
these permutations are tested more often. With a little bit of thinking and
some scripting knowledge, you can schedule a few cron jobs to kick off some
testing at night and over the weekend. There are also many testing tools out
there that could help. Some organizations even have server grids that pool
servers across different departments and teams to ensure that resources are
utilized efficiently. If this is available in your organization, you can submit tests
to be run at night or over weekends.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

166 97 Things Every Programmer Should Know

Testing Is the Engineering
Rigor of Software
Development
Neal Ford

DEVELOPERS LOVE TO USE TORTURED METAPHORS when trying to explain
what it is they do to family members, spouses, and other nontechies. We fre-
quently resort to bridge building and other “hard” engineering disciplines.
All these metaphors fall down quickly, though, when you start trying to push
them too hard. It turns out that software development is not like many of the
“hard” engineering disciplines in lots of important ways.

Compared to “hard” engineering, the software development world is at about
the same place the bridge builders were when the common strategy was to
build a bridge and then roll something heavy over it. If it stayed up, it was
a good bridge. If not, well, time to go back to the drawing board. Over the
past few thousand years, engineers have developed mathematics and physics
they can use for a structural solution without having to build it to see what
it does. We don’t have anything like that in software, and perhaps never will
because software is in fact very different. For a deep-dive exploration of the
comparison between software “engineering” and regular engineering, “What
is Software Design?”, written by Jack Reeves in C++ Journal in 1992, is a clas-
sic.* Even though it was written almost two decades ago, it is still remarkably
accurate. Reeves painted a gloomy picture in this comparison, but the thing
that was missing in 1992 was a strong testing ethos for software.

* http://www.developerdotstar.com/mag/articles/reeves_design.html

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.developerdotstar.com/mag/articles/reeves_design.html

167Collective Wisdom from the Experts

Testing “hard” things is tough because you have to build them to test them,
which discourages speculative building just to see what will happen. But the
building process in software is ridiculously cheap. We’ve developed an entire
ecosystem of tools that make it easy to do just that: unit testing, mock objects,
test harnesses, and lots of other stuff. Other engineers would love to be able
to build something and test it under realistic conditions. As software devel-
opers, we should embrace testing as the primary (but not the only) verifica-
tion mechanism for software. Rather than waiting for some sort of calculus for
software, we already have the tools at our disposal to ensure good engineering
practices. Viewed in this light, we now have ammunition against managers
who tell us “we don’t have time to test.” A bridge builder would never hear
from his boss, “Don’t bother doing structural analysis on that building—we
have a tight deadline.” The recognition that testing is indeed the path to repro-
ducibility and quality in software allows us as developers to push back on
arguments against it as professionally irresponsible.

Testing takes time, just like structural analysis takes time. Both activities ensure
the quality of the end product. It’s time for software developers to take up the
mantle of responsibility for what they produce. Testing alone isn’t sufficient,
but it is necessary. Testing is the engineering rigor of software development.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

168 97 Things Every Programmer Should Know

Thinking in States
Niclas Nilsson

PEOPLE iN THE REAL WORLD HAVE A WEiRD RELATiONSHiP WiTH STATE.

This morning, I stopped by the local store to prepare for another day of con-
verting caffeine to code. Since my favorite way of doing that is by drinking
lattes, and I couldn’t find any milk, I asked the clerk.

“Sorry, we’re super-duper, mega–out of milk.”

To a programmer, that’s an odd statement. You’re either out of milk, or you’re
not. There is no scale when it comes to being out of milk. Perhaps she was try-
ing to tell me that they’d be out of milk for a week, but the outcome was the
same—espresso day for me.

In most real-world situations, people’s relaxed attitude toward state is not an
issue. Unfortunately, however, many programmers are quite vague about state,
too—and that is a problem.

Consider a simple webshop that only accepts credit cards and does not invoice
customers, with an Order class containing this method:

public boolean isComplete() {

return isPaid() && hasShipped();

}

Reasonable, right? Well, even if the expression is nicely extracted into a method
instead of copy ’n’ pasted everywhere, the expression shouldn’t exist at all. The
fact that it does highlights a problem. Why? Because an order can’t be shipped
before it’s paid. Thereby, hasShipped can’t be true unless isPaid is true, which
makes part of the expression redundant. You may still want isComplete for
clarity in the code, but then it should look like this:

public boolean isComplete() {

return hasShipped();

}

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

169Collective Wisdom from the Experts

In my work, I see both missing checks and redundant checks all the time. This
example is tiny, but when you add cancellation and repayment, it’ll become
more complex, and the need for good state handling increases. In this case, an
order can only be in one of three distinct states:

• In progress: Can add or remove items. Can’t ship.

• Paid: Can’t add or remove items. Can be shipped.

• Shipped: Done. No more changes accepted.

These states are important, and you need to check that you’re in the expected
state before doing operations, and that you only move to a legal state from where
you are. In short, you have to protect your objects carefully, in the right places.

But how do you begin thinking in states? Extracting expressions to meaningful
methods is a very good start, but it is just a start. The foundation is to under-
stand state machines. I know you may have bad memories from CS class, but
leave them behind. State machines are not particularly hard. Visualize them to
make them simple to understand and easy to talk about. Test-drive your code
to unravel valid and invalid states and transitions and to keep them correct.
Study the State pattern. When you feel comfortable, read up on Design by
Contract. It helps you ensure a valid state by validating incoming data and the
object itself on entry and exit of each public method.

If your state is incorrect, there’s a bug, and you risk trashing data if you don’t
abort. If you find the state checks to be noise, learn how to use a tool, code
generation, weaving, or aspects to hide them. Regardless of which approach
you pick, thinking in states will make your code simpler and more robust.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

170 97 Things Every Programmer Should Know

Two Heads Are
Often Better
Than One
Adrian Wible

PROGRAMMiNG REqUiRES DEEP THOUGHT, and deep thought requires soli-
tude. So goes the programmer stereotype.

This “lone wolf ” approach to programming has been giving way to a more col-
laborative approach, which, I would argue, improves quality, productivity, and
job satisfaction for programmers. This approach has developers working more
closely with one another and also with nondevelopers—business and systems
analysts, quality assurance professionals, and users.

What does this mean for developers? Being the expert technologist is no longer
sufficient. You must become effective at working with others.

Collaboration is not about asking and answering questions or sitting in meet-
ings. It’s about rolling up your sleeves with someone else to jointly attack work.

I’m a big fan of pair programming. You might call this “extreme collaboration.”
As a developer, my skills grow when I pair. If I am weaker than my pairing
partner in the domain or technology, I clearly learn from his or her experience.
When I am stronger in some aspect, I learn more about what I know and don’t
know by having to explain myself. Invariably, we both bring something to the
table and learn from each other.

When pairing, we each bring our collective programming experiences—
domain as well as technical—to the problem at hand and can bring unique
insight and experience into writing software effectively and efficiently. Even
in cases of extreme imbalance in domain or technical knowledge, the more
experienced participant invariably learns something from the other—perhaps
a new keyboard shortcut, or exposure to a new tool or library. For the less-
experienced member of the pair, this is a great way to get up to speed.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

171Collective Wisdom from the Experts

Pair programming is popular with, though not exclusive to, proponents of
agile software development. Some who object to pairing ask, “Why should I
pay two programmers to do the work of one?” My response is that, indeed,
you should not. I argue that pairing increases quality, understanding of the
domain and technology, and techniques (like IDE tricks), and mitigates the
impact of lottery risk (one of your expert developers wins the lottery and
quits the next day).

What is the long-term value of learning a new keyboard shortcut? How do we
measure the overall quality improvement to the product resulting from pairing?
How do we measure the impact of your partner not letting you pursue a dead-
end approach to solving a difficult problem? One study cites an increase of 40%
in effectiveness and speed.* What is the value of mitigating your “lottery risk”?
Most of these gains are difficult to measure.

Who should pair with whom? If you’re new to the team, it’s important to find
a team member who is knowledgeable. Just as important, find someone who
has good interpersonal and coaching skills. If you don’t have much domain
experience, pair with a team member who is an expert in the domain.

If you are not convinced, experiment: collaborate with your colleagues. Pair on
an interesting, gnarly problem. See how it feels. Try it a few times.

* J. T. Nosek, “The Case for Collaborative Programming,” Communications of the ACM, March 1998

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

172 97 Things Every Programmer Should Know

Two Wrongs Can
Make a Right (and
Are Difficult to Fix)
Allan Kelly

CODE NEVER LiES, BUT iT CAN CONTRADiCT iTSELF. Some contradictions
lead to those “How can that possibly work?” moments.

In an interview,* the principal designer of the Apollo 11 Lunar Module soft-
ware, Allan Klumpp, disclosed that the software controlling the engines con-
tained a bug that should have made the lander unstable. However, another bug
compensated for the first, and the software was used for both Apollo 11 and 12
Moon landings before either bug was found or fixed.

Consider a function that returns a completion status. Imagine that it returns
false when it should return true. Now imagine that the calling function
neglects to check the return value. Everything works fine until one day some-
one notices the missing check and inserts it.

Or consider an application that stores state as an XML document. Imagine
that one of the nodes is incorrectly written as TimeToLive instead of TimeToDie,
as the documentation says it should. Everything appears fine while the writer
code and the reader code both contain the same error. But fix one, or add a
new application reading the same document, and the symmetry is broken, as
well as the code.

When two defects in the code create one visible fault, the methodical approach
to fixing faults can itself break down. The developer gets a bug report, finds the
defect, fixes it, and retests. The reported fault still occurs, however, because a
second defect is at work. So the first fix is removed, the code inspected until
the second underlying defect is found, and a fix applied for that. But the first
defect has returned, the reported fault is still seen, and so the second fix is
rolled back. The process repeats, but now the developer has dismissed two
possible fixes and is looking to make a third that will never work.

* http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

173Collective Wisdom from the Experts

The interplay between two code defects that appear as one visible fault not
only makes it hard to fix the problem, but also leads developers down blind
alleys, only to find they tried the right answers early on.

This doesn’t happen only in code: the problem also exists in written require-
ments documents. And it can spread, virally, from one place to another. An
error in the code compensates for an error in the written description.

It can spread to people, too: users learn that when the application says Left, it
means Right, so they adjust their behavior accordingly. They even pass it on
to new users: “Remember when that applications says ‘click the left button,’ it
really means the button on the right.” Fix the bug, and suddenly the users need
retraining.

Single wrongs can be easy to spot and easy to fix. It is the problems with multi-
ple causes, needing multiple changes, that are harder to resolve. In part, this is
because easy problems are so easily fixed that people tend to fix them relatively
quickly and store up the more difficult problems for a later date.

There is no simple advice for how to address faults arising from sympathetic
defects. Awareness of the possibility, a clear head, and a willingness to consider
all possibilities are needed.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

174 97 Things Every Programmer Should Know

Ubuntu Coding
for Your Friends
Aslam Khan

SO OFTEN, WE WRiTE CODE iN iSOLATiON and that code reflects our per-
sonal interpretation of a problem, as well as a very personalized solution. We
may be part of the team, yet we are isolated, as is the team. We forget all too
easily that this code created in isolation will be executed, used, extended, and
relied upon by others. It is easy to overlook the social side of software creation.
Creating software is a technical exercise mixed into a social exercise. We just
need to lift our heads more often to realize that we are not working in isola-
tion, and we have shared responsibility for increasing the probability of suc-
cess for everyone, not just the development team.

You can write good-quality code in isolation, all the while lost in self. From
one perspective, that is an egocentric approach (not ego as in arrogant, but
ego as in personal). It is also a Zen view and it is about you, in that moment of
creating code. I always try to live in the moment because it helps me get closer
to good quality, but then I live in my moment. What about the moment of my
team? Is my moment the same as the team’s moment?

In Zulu, the philosophy of Ubuntu is summed up as “Umuntu ngumuntu
ngabantu,” which roughly translates to “A person is a person through (other)
persons.” I get better because you make me better through your good actions.
The flip side is that you get worse at what you do when I am bad at what I
do. Among developers, we can narrow it down to “A developer is a developer
through (other) developers.” If we take it down to the metal, then “Code is
code through (other) code.”

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

175Collective Wisdom from the Experts

The quality of the code I write affects the quality of the code you write. What if
my code is of poor quality? Even if you write very clean code, it is at the points
where you use my code that your code quality will degrade to close to the
quality of my code. You can apply many patterns and techniques to limit the
damage, but the damage has already been done. I have caused you to do more
than what you needed to do, simply because I did not think about you when I
was living in my moment.

I may consider my code to be clean, but I can still make it better just by Ubuntu
coding. What does Ubuntu code look like? It looks just like good, clean code.
It is not about the code, the artifact. It is about the act of creating that artifact.
Coding for your friends, with Ubuntu, will help your team live your values and
reinforce your principles. The next person that touches your code, in whatever
way, will be a better person and a better developer.

Zen is about the individual. Ubuntu is about Zen for a group of people. Very,
very rarely do we create code for ourselves alone.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

176 97 Things Every Programmer Should Know

The Unix Tools
Are Your Friends
Diomidis Spinellis

iF, ON MY WAY TO ExiLE ON A DESERT iSLAND, I had to choose between an
IDE and the Unix toolchest, I’d pick the Unix tools without a second thought.
Here are the reasons why you should become proficient with Unix tools.

First, IDEs target specific languages, while Unix tools can work with anything
that appears in textual form. In today’s development environment, where new
languages and notations spring up every year, learning to work in the Unix
way is an investment that will pay off time and again.

Furthermore, while IDEs offer just the commands their developers conceived,
with Unix tools you can perform any task you can imagine. Think of them
as (classic pre-Bionicle) Lego blocks: you create your own commands simply
by combining the small but versatile Unix tools. For instance, the following
sequence is a text-based implementation of Cunningham’s signature analysis—a
sequence of each file’s semicolons, braces, and quotes, which can reveal a lot
about the file’s contents:

for i in *.java; do

echo -n "$i: "

sed 's/[^"{};]//g' $i | tr -d '\n'

echo

done

In addition, each IDE operation you learn is specific to that given task—for
instance, adding a new step in a project’s debug build configuration. By con-
trast, sharpening your Unix tool skills makes you more effective at any task.
As an example, I’ve employed the sed tool used in the preceding command
sequence to morph a project’s build for cross-compiling on multiple processor
architectures.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

177Collective Wisdom from the Experts

Unix tools were developed in an age when a multiuser computer had 128KB
of RAM. The ingenuity that went into their design means that nowadays they
can handle huge data sets extremely efficiently. Most tools work like filters,
processing just a single line at the time, meaning that there is no upper limit in
the amount of data they can handle. You want to search for the number of edits
stored in the half-terabyte English Wikipedia dump? A simple invocation of

grep '<revision>' | wc –l

will give you the answer without sweat. If you find a command sequence gen-
erally useful, you can easily package it into a shell script, using some uniquely
powerful programming constructs, such as piping data into loops and condi-
tionals. Even more impressively, Unix commands executing as pipelines, like
the preceding one, will naturally distribute their load among the many pro-
cessing units of modern multicore CPUs.

The small-is-beautiful provenance and open source implementations of the
Unix tools make them ubiquitously available, even on resource-constrained
platforms, like my set-top media player or DSL router. Such devices are
unlikely to offer a powerful graphical user interface, but they often include the
BusyBox application, which provides the most commonly used tools. And if
you are developing on Windows, the Cygwin environment offers you all imag-
inable Unix tools, both as executables and in source code form.

Finally, if none of the available tools matches your needs, it’s very easy to extend
the world of the Unix tools. Just write a program (in any language you fancy)
that plays by a few simple rules: your program should perform just a single
task; it should read data as text lines from its standard input; and it should dis-
play its results unadorned by headers and other noise on its standard output.
Parameters affecting the tool’s operation are given in the command line. Fol-
low these rules, and “yours is the Earth and everything that’s in it.”

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

178 97 Things Every Programmer Should Know

Use the Right
Algorithm and
Data Structure
Jan Christiaan “JC” van Winkel

A big bank with many branch offices complained that the new computers it
had bought for the tellers were too slow. This was in the time before everyone
used electronic banking, and ATMs were not as widespread as they are now.
People would visit the bank far more often, and the slow computers were
making the people queue up. Consequently, the bank threatened to break its
contract with the vendor.

The vendor sent a performance analysis and tuning specialist to determine
the cause of the delays. He soon found one specific program running on the
terminal that consumed almost all the CPU capacity. Using a profiling tool, he
zoomed in on the program and he could see the function that was the culprit.
The source code read:

for (i=0; i<strlen(s); ++i) {

 if (... s[i] ...) ...

 }

And string s was, on average, thousands of characters long. The code (writ-
ten by the bank) was quickly changed, and the bank tellers lived happily ever
after.…

SHOULDN’T THE PROGRAMMER have done better than to use code that
needlessly scaled quadratically?

Each call to strlen traversed every one of the many thousand characters in
the string to find its terminating null character. The string, however, never
changed. By determining its length in advance, the programmer could have
saved thousands of calls to strlen (and millions of loop executions):

n=strlen(s);

for (i=0; i<n; ++i) {

if (... s[i] ...) ...

}

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

179Collective Wisdom from the Experts

Everyone knows the adage “first make it work, then make it work fast” to avoid
the pitfalls of micro-optimization. But the preceding example would almost
make you believe that the programmer followed the Machiavellian adagio
“first make it work slowly.”

This thoughtlessness is something you may come across more than once. And
it is not just a “don’t reinvent the wheel” thing. Sometimes novice program-
mers just start typing away without really thinking, and suddenly they have
“invented” bubble sort. They may even be bragging about it.

The other side of choosing the right algorithm is the choice of data structure. It
can make a big difference: using a linked list for a collection of a million items
you want to search through—compared to a hashed data structure or a binary
tree—will have a big impact on the user’s appreciation of your programming.

Programmers should not reinvent the wheel, and should use existing libraries
where possible. But to be able to avoid problems like the bank’s, they should
also be educated about algorithms and how they scale. Is it just the eye candy
in modern text editors that makes them as slow as old-school programs like
WordStar in the 1980s? Many say reuse in programming is paramount. Above
all, however, programmers should know when, what, and how to reuse. To do
that, they should have knowledge of the problem domain and of algorithms
and data structures.

A good programmer should also know when to use an abominable algorithm.
For example, if the problem domain dictates that there can never be more
than five items (like the number of dice in a Yahtzee game), you know that you
always have to sort at most five items. In that case, bubble sort might actually
be the most efficient way to sort the items. Every dog has its day.

So, read some good books—and make sure you understand them. And if you
really read Donald Knuth’s The Art of Computer Programming (Addison-Wesley
Professional), well, you might even be lucky: find a mistake by the author, and
you’ll earn one of Don Knuth’s hexadecimal dollar ($2.56) checks.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

180 97 Things Every Programmer Should Know

Verbose Logging
Will Disturb
Your Sleep
Johannes Brodwall

WHEN i ENCOUNTER A SYSTEM that has already been in development or pro-
duction for a while, the first sign of real trouble is always a dirty log. You know
what I’m talking about: when clicking a single link on a normal flow on a web
page results in a deluge of messages in the only log that the system provides.
Too much logging can be as useless as none at all.

If your systems are like mine, when your job is done, someone else’s job is
just starting. After the system has been developed, it will hopefully live a long
and prosperous life serving customers (if you’re lucky). How will you know if
something goes wrong when the system is in production, and how will you
deal with it?

Maybe someone monitors your system for you, or maybe you will monitor it
yourself. Either way, the logs will probably be part of the monitoring. If some-
thing shows up and you have to be woken up to deal with it, you want to make
sure there’s a good reason for it. If my system is dying, I want to know. But if
there’s just a hiccup, I’d rather enjoy my beauty sleep.

For many systems, the first indication that something is wrong is a log mes-
sage being written to some log. Mostly, this will be the error log. So do yourself
a favor: make sure from day one that if something is logged in the error log,
you’re willing to have someone call and wake you in the middle of the night
about it. If you can simulate load on your system during system testing, look-
ing at a noise-free error log is also a good first indication that your system is
reasonably robust—or an early warning if it’s not.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

181Collective Wisdom from the Experts

Distributed systems add another level of complexity. You have to decide how
to deal with an external dependency failing. If your system is very distributed,
this may be a common occurrence. Make sure your logging policy takes this
into account.

In general, the best indication that everything is all right is that the messages
at a lower priority are ticking along happily. I want about one INFO-level log
message for every significant application event.

A cluttered log is an indication that the system will be hard to control once it
reaches production. If you don’t expect anything to show up in the error log, it
will be much easier to know what to do when something does show up.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

182 97 Things Every Programmer Should Know

WET Dilutes
Performance
Bottlenecks
Kirk Pepperdine

THE iMPORTANCE OF THE DRY PRiNCiPLE (Don’t Repeat Yourself) is that
it codifies the idea that every piece of knowledge in a system should have a
singular representation. In other words, knowledge should be contained in
a single implementation. The antithesis of DRY is WET (Write Every Time).
Our code is WET when knowledge is codified in several different implemen-
tations. The performance implications of DRY versus WET become very clear
when you consider their numerous effects on a performance profile.

Let’s start by considering a feature of our system, say X, that is a CPU bottle-
neck. Let’s say feature X consumes 30% of the CPU. Now let’s say that feature
X has 10 different implementations. On average, each implementation will
consume 3% of the CPU. As this level of CPU utilization isn’t worth worrying
about if we are looking for a quick win, it is likely that we’d miss that this fea-
ture is our bottleneck. However, let’s say that we somehow recognized feature
X as a bottleneck. We are now left with the problem of finding and fixing every
single implementation. With WET, we have 10 different implementations that
we need to find and fix. With DRY, we would clearly see the 30% CPU utiliza-
tion and would have a tenth of the code to fix. And did I mention that we don’t
have to spend time hunting down each implementation?

There is one use case where we are often guilty of violating DRY: our use of
collections. A common technique to implement a query would be to iterate
over the collection and then apply the query in turn to each element:

public class UsageExample {

private ArrayList<Customer> allCustomers = new ArrayList<Customer>();

// ...

public ArrayList<Customer> findCustomersThatSpendAtLeast(Money amount) {

ArrayList<Customer> customersOfInterest = new ArrayList<Customer>();

for (Customer customer: allCustomers) {

if (customer.spendsAtLeast(amount))

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

183Collective Wisdom from the Experts

customersOfInterest.add(customer);

}

return customersOfInterest;

}

}

By exposing this raw collection to clients, we have violated encapsulation. This
not only limits our ability to refactor, but it also forces users of our code to vio-
late DRY by having each of them reimplement potentially the same query. This
situation can easily be avoided by removing the exposed raw collections from
the API. In this example, we can introduce a new, domain-specific collective
type called CustomerList. This new class is more semantically in line with our
domain. It will act as a natural home for all our queries.

Having this new collection type will also allow us to easily see if these queries
are a performance bottleneck. By incorporating the queries into the class, we
eliminate the need to expose representation choices, such as ArrayList, to our
clients. This gives us the freedom to alter these implementations without fear
of violating client contracts:

public class CustomerList {

private ArrayList<Customer> customers = new ArrayList<Customer>();

private SortedList<Customer> customersSortedBySpendingLevel =
 new SortedList<Customer)();

// ...

public CustomerList findCustomersThatSpendAtLeast(Money amount) {

return new CustomerList(
 customersSortedBySpendingLevel.elementsLargerThan(amount));

}

}

public class UsageExample {

public static void main(String[] args) {

CustomerList customers = new CustomerList();

// ...

CustomerList customersOfInterest =
 customers.findCustomersThatSpendAtLeast(someMinimalAmount);

// ...

}

}

In this example, adherence to DRY allowed us to introduce an alternate index-
ing scheme with SortedList keyed on our customers’ level of spending. More
important than the specific details of this particular example, following DRY
helped us to find and repair a performance bottleneck that would have been
more difficult to find had the code been WET.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

184 97 Things Every Programmer Should Know

When Programmers
and Testers
Collaborate
Janet Gregory

SOMETHiNG MAGiCAL HAPPENS when testers and programmers start to col-
laborate. There is less time spent sending bugs back and forth through the
defect tracking system. Less time is wasted trying to figure out whether some-
thing is really a bug or a new feature, and more time is spent developing good
software to meet customer expectations. There are many opportunities for
starting collaboration before coding even begins.

Testers can help customers write and automate acceptance tests using the lan-
guage of their domain with tools such as Fit (Framework for Integrated Test).
When these tests are given to the programmers before the coding begins, the
team is practicing acceptance test–driven development (ATDD). The program-
mers write the fixtures to run the tests, and then code to make the tests pass.
These tests then become part of the regression suite. When this collaboration
occurs, the functional tests are completed early, allowing time for exploratory
testing on edge conditions or through workflows of the bigger picture.

We can take it one step further. As a tester, I can supply most of my testing
ideas before the programmers start coding a new feature. When I ask the pro-
grammers if they have any suggestions, they almost always provide me with
information that helps me with better test coverage, or helps me to avoid
spending a lot of time on unnecessary tests. Often, we have prevented defects
because the tests clarify many of the initial ideas. For example, in one project I
was on, the Fit tests I gave the programmers displayed the expected results of

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

185Collective Wisdom from the Experts

a query to respond to a wildcard search. The programmer had fully intended
to code only complete word searches. We were able to talk to the customer and
determine the correct interpretation before coding started. By collaborating,
we prevented the defect, which saved us both a lot of wasted time.

Programmers can collaborate with testers to create successful automation as
well. They understand good coding practices and can help testers set up a
robust test automation suite that works for the whole team. I have often seen
test automation projects fail because the tests are poorly designed. The tests try
to test too much, or the testers haven’t understood enough about the technol-
ogy to be able to keep tests independent. The testers are often the bottleneck,
so it makes sense for programmers to work with them on tasks like automa-
tion. Working with the testers to understand what can be tested early, perhaps
by providing a simple tool, will give the programmers another cycle of feed-
back that will help them deliver better code in the long run.

When testers stop thinking that their only job is to break the software and find
bugs in the programmers’ code, programmers stop thinking that testers are
“out to get them,” and are more open to collaboration. When programmers
start realizing that they are responsible for building quality into their code,
testability of the code is a natural by-product, and the team can automate more
of the regression tests together. The magic of successful teamwork begins.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

186 97 Things Every Programmer Should Know

Write Code As If You
Had to Support It for
the Rest of Your Life
Yuriy Zubarev

YOU COULD ASK 97 PEOPLE what every programmer should know and do,
and you might get 97 distinct answers. This could be both overwhelming and
intimidating at the same time. All advice is good, all principles are sound, and
all stories are compelling, but where do you start? More important, once you
have started, how do you keep up with all the best practices you’ve learned,
and how do you make them an integral part of your programming practice?

I think the answer lies in your frame of mind or, more plainly, in your atti-
tude. If you don’t care about your fellow developers, testers, managers, sales
and marketing people, and end users, then you will not be driven to employ
test-driven development or write clear comments in your code, for example.
I think there is a simple way to adjust your attitude and always be driven to
deliver the best quality products:

Write code as if you had to support it for the rest of your life.

That’s it. If you accept this notion, many wonderful things will happen. If you
were to accept that any of your previous or current employers had the right
to call you in the middle of the night, asking you to explain the choices you
made while writing the fooBar method, you would gradually improve toward
becoming an expert programmer. You would naturally want to come up with
better variable and method names. You would stay away from blocks of code
comprising hundreds of lines. You would seek, learn, and use design patterns.
You would write comments, test your code, and refactor continually. Support-
ing all the code you’d ever written for the rest of your life should also be a
scalable endeavor. You would therefore have no choice but to become better,
smarter, and more efficient.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

187Collective Wisdom from the Experts

If you reflect on it, the code you wrote many years ago still influences your
career, whether you like it or not. You leave a trail of your knowledge, attitude,
tenacity, professionalism, level of commitment, and degree of enjoyment with
every method, class, and module you design and write. People will form opin-
ions about you based on the code that they see. If those opinions are constantly
negative, you will get less from your career than you hoped. Take care of your
career, of your clients, and of your users with every line of code—write code as
if you had to support it for the rest of your life.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

188 97 Things Every Programmer Should Know

Write Small
Functions Using
Examples
Keith Braithwaite

WE WOULD LiKE TO WRiTE CODE THAT iS CORRECT, and have evidence on
hand that it is correct. It can help with both issues to think about the “size” of a
function. Not in the sense of the amount of code that implements a function—
although that is interesting—but rather the size of the mathematical function
that our code manifests.

For example, in the game of Go there is a condition called atari in which a
player’s stones may be captured by her opponent: a stone with two or more free
spaces adjacent to it (called liberties) is not in atari. It can be tricky to count
how many liberties a stone has, but determining atari is easy if that is known.
We might begin by writing a function like this:

boolean atari(int libertyCount)

libertyCount < 2

This is larger than it looks. A mathematical function can be understood as a
set, some subset of the Cartesian product of the sets that are its domain (here,
int) and range (here, boolean). If those sets of values were the same size as in
Java, then there would be 2L*(Integer.MAX_VALUE+(–1L*Integer.MIN_VALUE)+1L)
or 8,589,934,592 members in the set int×boolean. Half of these are members
of the subset that is our function, so to provide complete evidence that our
function is correct, we would need to check around 4.3×109 examples.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

189Collective Wisdom from the Experts

This is the essence of the claim that tests cannot prove the absence of bugs.
Tests can demonstrate the presence of features, though. But still we have this
issue of size.

The problem domain helps us out. The nature of Go means that the number
of liberties of a stone is not any int, but exactly one of {1,2,3,4}. So we could
alternatively write:

LibertyCount = {1,2,3,4}

boolean atari(LibertyCount libertyCount)

libertyCount == 1

This is much more tractable: the function computed is now a set with at most
eight members. In fact, four checked examples would constitute evidence of
complete certainty that the function is correct. This is one reason why it’s a
good idea to use types closely related to the problem domain to write pro-
grams, rather than native types. Using domain-inspired types can often make
our functions much smaller. One way to find out what those types should be
is to find the examples to check in problem domain terms, before writing the
function.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

190 97 Things Every Programmer Should Know

Write Tests
for People
Gerard Meszaros

YOU ARE WRiTiNG AUTOMATED TESTS for some or all of your production
code. Congratulations! You are writing your tests before you write the code?
Even better!! Just doing this makes you one of the early adopters on the lead-
ing edge of software engineering practice. But are you writing good tests? How
can you tell? One way is to ask, “Who am I writing the tests for?” If the answer
is “For me, to save me the effort of fixing bugs” or “For the compiler, so they
can be executed,” then the odds are you aren’t writing the best possible tests. So
who should you be writing the tests for? For the person trying to understand
your code.

Good tests act as documentation for the code they are testing. They describe
how the code works. For each usage scenario, the test(s):

• Describe the context, starting point, or preconditions that must be satisfied

• Illustrate how the software is invoked

• Describe the expected results or postconditions to be verified

Different usage scenarios will have slightly different versions of each of
these. The person trying to understand your code should be able to look at
a few tests, and by comparing these three parts of the tests in question, be
able to see what causes the software to behave differently. Each test should
clearly illustrate the cause-and-effect relationship among these three parts.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

191Collective Wisdom from the Experts

This implies that what isn’t visible in the test is just as important as what is visible.
Too much code in the test distracts the reader with unimportant trivia. When-
ever possible, hide such trivia behind meaningful method calls—the Extract
Method refactoring is your best friend. And make sure you give each test a
meaningful name that describes the particular usage scenario so the test reader
doesn’t have to reverse-engineer each test to understand what the various sce-
narios are. Between them, the names of the test class and class method should
include at least the starting point and how the software is being invoked. This
allows the test coverage to be verified via a quick scan of the method names. It
can also be useful to include the expected results in the test method names as
long as this doesn’t cause the names to be too long to see or read.

It is also a good idea to test your tests. You can verify that they detect the errors
you think they detect by inserting those errors into the production code (your
own private copy that you’ll throw away, of course). Make sure they report
errors in a helpful and meaningful way. You should also verify that your tests
speak clearly to a person trying to understand your code. The only way to
do this is to have someone who isn’t familiar with your code read your tests
and tell you what she learned. Listen carefully to what she says. If she didn’t
understand something clearly, it probably isn’t because she isn’t very bright. It
is more likely that you weren’t very clear. (Go ahead and reverse the roles by
reading her tests!)

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

192 97 Things Every Programmer Should Know

You Gotta Care
About the Code
Pete Goodliffe

iT DOESN’T TAKE SHERLOCK HOLMES to work out that good programmers
write good code. Bad programmers…don’t. They produce monstrosities that
the rest of us have to clean up. You want to write the good stuff, right? You
want to be a good programmer.

Good code doesn’t pop out of thin air. It isn’t something that happens by luck
when the planets align. To get good code, you have to work at it. Hard. And
you’ll only get good code if you actually care about good code.

Good programming is not born from mere technical competence. I’ve seen
highly intellectual programmers who can produce intense and impressive
algorithms, who know their language standard by heart, but who write the
most awful code. It’s painful to read, painful to use, and painful to modify. I’ve
seen more humble programmers who stick to very simple code, but who write
elegant and expressive programs that are a joy to work with.

Based on my years of experience in the software factory, I’ve concluded that
the real difference between adequate programmers and great programmers is
this: attitude. Good programming lies in taking a professional approach, and
wanting to write the best software you can, within the real-world constraints
and pressures of the software factory.

The code to hell is paved with good intentions. To be an excellent programmer, you
have to rise above good intentions, and actually care about the code—foster posi-
tive perspectives and develop healthy attitudes. Great code is carefully crafted
by master artisans, not thoughtlessly hacked out by sloppy programmers or
erected mysteriously by self-professed coding gurus.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

193Collective Wisdom from the Experts

You want to write good code. You want to be a good programmer. So, you care
about the code:

• In any coding situation, you refuse to hack something that only seems to
work. You strive to craft elegant code that is clearly correct (and has good
tests to show that it is correct).

• You write code that is discoverable (that other programmers can easily pick
up and understand), that is maintainable (that you, or other programmers,
will be easily able to modify in the future), and that is correct (you take
all steps possible to determine that you have solved the problem, not just
made it look like the program works).

• You work well alongside other programmers. No programmer is an
island. Few programmers work alone; most work in a team of program-
mers, either in a company environment or on an open source project.
You consider other programmers and construct code that others can
read. You want the team to write the best software possible, rather than to
make yourself look clever.

• Any time you touch a piece of code, you strive to leave it better than you
found it (either better structured, better tested, more understandable…).

• You care about code and about programming, so you are constantly
learning new languages, idioms, and techniques. But you apply them only
when appropriate.

Fortunately, you’re reading this collection of advice because you do care about
code. It interests you. It’s your passion. Have fun programming. Enjoy cutting
code to solve tricky problems. Produce software that makes you proud.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

194 97 Things Every Programmer Should Know

Your Customers
Do Not Mean
What They Say
Nate Jackson

i’VE NEVER MET A CUSTOMER YET that wasn’t all too happy to tell me what
they wanted—usually in great detail. The problem is that customers don’t
always tell you the whole truth. They generally don’t lie, but they speak in
customer speak, not developer speak. They use their terms and their contexts.
They leave out significant details. They make assumptions that you’ve been
at their company for 20 years, just like they have. This is compounded by the
fact that many customers don’t actually know what they want in the first place!
Some may have a grasp of the “big picture,” but they are rarely able to com-
municate the details of their vision effectively. Others might be a little lighter
on the complete vision, but they know what they don’t want. So, how can you
possibly deliver a software project to someone who isn’t telling you the whole
truth about what they want? It’s fairly simple. Just interact with them more.

Challenge your customers early, and challenge them often. Don’t simply restate
what they told you they wanted in their words. Remember: they didn’t mean
what they told you. I often implement this advice by swapping out the cus-
tomer’s words in conversation with them and judging their reaction. You’d be
amazed how many times the term customer has a completely different mean-
ing from the term client. Yet the guy telling you what he wants in his software
project will use the terms interchangeably and expect you to keep track as to
which one he’s talking about. You’ll get confused, and the software you write
will suffer.

Discuss topics numerous times with your customers before you decide that
you understand what they need. Try restating the problem two or three times

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

195Collective Wisdom from the Experts

with them. Talk to them about the things that happen just before or just after
the topic you’re talking about to get better context. If at all possible, have mul-
tiple people tell you about the same topic in separate conversations. They will
almost always tell you different stories, which will uncover separate yet related
facts. Two people telling you about the same topic will often contradict each
other. Your best chance for success is to hash out the differences before you
start your ultra-complex software crafting.

Use visual aids in your conversations. This could be as simple as using a white-
board in a meeting, as easy as creating a visual mockup early in the design
phase, or as complex as crafting a functional prototype. It is generally known
that using visual aids during a conversation helps lengthen our attention span
and increases the retention rate of the information. Take advantage of this fact
and set your project up for success.

In a past life, I was a “multimedia programmer” on a team that produced glitzy
projects. A client of ours described her thoughts on the look and feel of the
project in great detail. The general color scheme discussed in the design meet-
ings indicated a black background for the presentation. We thought we had it
nailed. Teams of graphic designers began churning out hundreds of layered
graphics files. Loads of time was spent molding the end product. On the day
we showed the client the fruits of our labor, we got some startling news. When
she saw the product, her exact words about the background color were, “When
I said black, I meant white.” So, you see, it is never as clear as black and white.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

196 Contributors

Contributors

Adrian Wible

Adrian Wible’s self-chosen title is “software development catalyst.”
He works for ThoughtWorks, Inc., mostly in project management
roles, but strives to fend off suggestions of being “post-technical” by
getting his hands dirty in software development from time to

time. He was indoctrinated in the Waterfall/SDLC mode of development as a
developer at IBM, and moved into project, people, and process management
roles throughout his 20+ year career there and at Dell Computer Corporation.
Adrian joined ThoughtWorks and discovered the Agile Manifesto (and XP,
and Scrum, and…) in 2005, and realized that project work and management
could be fun, exciting, and rewarding. He hasn’t looked back since.

Adrian can be reached at awible@thoughtworks.com.

“Two Heads Are Often Better Than One,” page 170

Alan Griffiths

Alan Griffiths has been developing software through many fash-
ions in development processes, technologies, and programming
languages. During that time, he’s delivered working software and
development processes to a range of organizations, written for a

number of magazines, spoken at several conferences, and made many friends.
Firmly convinced that common sense is a rare and marketable commodity, he’s
currently working as an independent consultant through his company, Octopull
Limited.

“Don’t Rely on ‘Magic Happens Here’,” page 58

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

mailto:
http://www.octopull.demon.co.uk/
http://www.octopull.demon.co.uk/

197Contributors

Alex Miller

Alex Miller is a tech lead and engineer at Terracotta, Inc., the
makers of the open source Java clustering product Terracotta.
Prior to Terracotta, Alex worked at BEA Systems on the Aqua-
Logic product line, and was chief architect at MetaMatrix. His

interests include Java, concurrency, distributed systems, query languages, and
software design.

Alex enjoys writing his blog at http://tech.puredanger.com. Along with the
other members of the Terracotta team, he is a contributing author to the 2008
release The Definitive Guide to Terracotta (Apress). Alex is a frequent speaker
at user groups and conferences, and is the founder of the Strange Loop confer-
ence in St. Louis (http://thestrangeloop.com).

“Start from Yes,” page 154

Allan Kelly

Allan Kelly is an accomplished software engineer who now works
on the management side of development. He helps software
teams improve their performance and adopt Agile methods.
Based in London, he provides coaching, training, and consulting

to companies large and small.

He is a frequent contributor to journals and conferences and is the author of
Changing Software Development: Learning to Be Agile (John Wiley & Sons).
Allan holds a BSc degree in computing and an MBA in management. He is
currently working on a book of business strategy patterns for software compa-
nies. Find out more about Allan at http://www.allankelly.net.

“Check Your Code First Before Looking to Blame Others,” page 18
“Two Wrongs Can Make a Right (and Are Difficult to Fix),” page 172

Anders Norås

Anders Norås is a seasoned software developer and speaker. The
“enterpriseyness” of EJB drove him to Microsoft .NET back in
2002. He quickly made a name for himself in the Microsoft com-
munity by using his Java experiences to get a head start on fellow

developers. In 2006, he got reacquainted with his lost love—Java—and today he
is a polyglot, combining the best of both worlds to build better software. Anders
is the founder of the Quaere project and a contributor to a few open source proj-
ects. He has given talks at many conferences and user group meetings and is

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://tech.puredanger.com
http://thestrangeloop.com
http://www.allankelly.net

198 Contributors

known for talks with few slides and lots of code. Anders lives in Norway, where
he works for Objectware as its chief technology evangelist. You can read his
blog at http://andersnoras.com.

“Don’t Just Learn the Language, Understand Its Culture,” page 54

Ann Katrin Gagnat

Ann Katrin Gagnat has four years of experience with Java and
works as a system developer at Steria AS in Norway. Her profes-
sional interests include agile development, patterns, and writing
readable code.

“Pair Program and Feel the Flow,” page 128

Aslam Khan

Aslam Khan has spent more than half his life creating software.
He still believes the truth is in the code that gets executed, but
that belief is soberly balanced by his other core value—that peo-
ple are more important than compilers. As a software architect

and coach, Aslam spends his time helping teams to design and build better
software, while having fun and making worthwhile friendships. Aslam is part
of the factor10 team, and he is also an editor for the architecture community at
DZone. You can read his blog at http://aslamkhan.net.

“Ubuntu Coding for Your Friends,” page 174

Burk Hufnagel

Burk Hufnagel has been creating positive user experiences since
1978 as a software architect and developer. As someone who has
spent most of his life designing and crafting software, Burk has
made a habit of developing practical solutions for difficult prob-

lems. He is a bibliophile and a technophile, and tends to appreciate esoteric
subjects.

Burk was one of the contributors to 97 Things Every Software Architect Should
Know (O’Reilly). He spoke at JavaOne 2008 on building better user experi-
ences, and at the International Association of Software Architects’ IT Archi-
tecture Regional Conference in 2007 and 2009. He also authored a paper for
the IASA Skills Library on the not-so-subtle connection between user inter-
face design and user experience.

“News of the Weird: Testers Are Your Friends,” page 120
“Put the Mouse Down and Step Away from the Keyboard,” page 138

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://andersnoras.com
http://aslamkhan.net
http://www.strategy-nets.com/wiki/converting-your-near-time-account-to-strategy-nets
http://www.strategy-nets.com/wiki/converting-your-near-time-account-to-strategy-nets

199Contributors

Cal Evans

Cal Evans is the director of the PCE for Ibuildings. He has been
a programmer in various languages for more than 25 years. He
is a published author of books and magazine articles on a vari-
ety of topics in several programming languages. He is an Amer-

ican currently based in Utrecht, the Netherlands, where he speaks, writes,
codes, and works with the global PHP community. His blog can be found at
http://blog.calevans.com.

“A Comment on Comments,” page 32
“Don’t Touch That Code!,” page 62

Carroll Robinson

Carroll Robinson is an embedded firmware engineer with
approximately 20 years of experience. He has written C and
assembly language firmware for a variety of processors (includ-
ing 8051, 80x86, 68k, ARM7, and C2000), with applications in

medical equipment, laboratory instrumentation, and wireless communica-
tions. He has written applications in C++, Java, and Python as well. He prefers
to use open source tools (GCC, GAS, GDB) on Linux platforms, and has built
several embedded Linux systems.

Carroll holds a master’s of science degree in computer engineering from Case
Western Reserve University in Cleveland, Ohio.

“Know How to Use Command-Line Tools,” page 86

Cay Horstmann

Cay Horstmann grew up in northern Germany and attended the
Christian-Albrechts-Universität in Kiel, a harbor town by the
Baltic Sea. He received an MS in computer science from Syracuse
University, and a PhD in mathematics from the University of

Michigan in Ann Arbor. For four years, Cay was VP and CTO of an Internet
startup that grew from three people in a tiny office to a public company. He
now teaches computer science at San Jose State University. In his copious spare
time, he writes books and articles on Java and computer science education.

“Step Back and Automate, Automate, Automate,” page 156

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://blog.calevans.com

200 Contributors

Chuck Allison

Chuck Allison is an associate professor of computer science at
Utah Valley University. He spent the two previous decades as a
software engineer in the western U.S. He was an active contrib-
utor to C++98, senior editor of the C/C++ Users Journal, and

coauthor of Thinking in C++, Volume 2, with Bruce Eckel. He was also the
founder of The C++ Source and a contributing editor for Better Software Mag-
azine. For more information, visit his website: http://www.chuckallison.com.

“Floating-Point Numbers Aren’t Real,” page 66

Clint Shank

Clint Shank is a software developer, consultant, and mentor at
Sphere of Influence, Inc., a company that leads with design-
driven innovation to make curve-jumping, mouth-watering soft-
ware that’s awesome inside and out. His typical consulting focus

is the design and construction of enterprise applications.

He is particularly interested in agile practices such as continuous integration
and test-driven development; the programming languages Java, Groovy, Ruby,
and Scala; frameworks like Spring and Hibernate; and general design and
application architecture.

He keeps a blog at http://clintshank.javadevelopersjournal.com/ and was a con-
tributor to the book 97 Things Every Software Architect Should Know.

“Continuous Learning,” page 36

Dan Bergh johnsson

Dan Bergh Johnsson is senior consultant, partner, and official
spokesperson for Omegapoint AB. He is a domain-driven design
enthusiast and a long-time agile fan, and considers himself as
part of the software craftsman tradition and the “OOPSLA

School” of development. He cofounded the Swedish domain-driven design
group DDD Sverige, contributes at http://domaindrivendesign.org/, and often
delivers presentations at international conferences. He also shares his love of
the craft in his blog, “Dear Junior: Letters to a Junior Programmer,” which can
be found at http://dearjunior.blogspot.com.

“Distinguish Business Exceptions from Technical,” page 42
“Know Your Next Commit,” page 94

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.chuckallison.com
http://clintshank.javadevelopersjournal.com/
http://domaindrivendesign.org/
http://dearjunior.blogspot.com

201Contributors

Dan North

Dan North writes software and coaches teams in agile and lean
methods. He believes in putting people first and writing simple,
pragmatic software. He also believes that most problems that
teams face are about communication—and all the others are, too.

This is why he puts so much emphasis on “getting the words right,” and why
he is so passionate about behavior-driven development, communication, and
how people learn. Dan has been working in the IT industry since he graduated
in 1991, and he occasionally blogs at http://dannorth.net.

“Code in the Language of the Domain,” page 22

Daniel Lindner

Daniel Lindner has developed software for over 15 years, both paid
for and voluntary (open source). He cofounded a software devel-
opment company in Karlsruhe, Germany, and gives lectures on
software engineering. He has been seen having a social life, too.

“Let Your Project Speak for Itself,” page 104

Diomidis Spinellis

Diomidis Spinellis is a professor in the department of manage-
ment science and technology at the Athens University of Eco-
nomics and Business, Greece. His research interests include
software engineering, computer security, and programming lan-

guages. He has written the two award-winning Open Source Perspective books,
Code Reading and Code Quality (both Addison-Wesley Professional), as well
as dozens of scientific papers. His most recent work is the collection Beautiful
Architecture (O’Reilly). He is a member of the IEEE Software editorial board,
authoring the regular “Tools of the Trade” column. Diomidis is a FreeBSD
committer and the developer of UMLGraph and other open source software
packages, libraries, and tools. He holds an MEng in software engineering and
a PhD in computer science, both from Imperial College London. Diomidis is
a senior member of the ACM and the IEEE and a member of the Usenix Asso-
ciation.

“Large, Interconnected Data Belongs to a Database,” page 96
“Put Everything Under Version Control,” page 136
“The Unix Tools Are Your Friends,” page 176

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://dannorth.net

202 Contributors

Edward Garson

Edward Garson has been passionate about computing since
learning to program in Logo on an Apple II. He currently works
as an independent software development consultant, with a focus
on helping companies transition to agile methods.

Edward’s technical interests include software architecture and design, pro-
gramming languages, and GNU/Linux. He is an enthusiastic presenter and
has spoken at the British Computer Society, the Microsoft Architects Council,
and various conferences. Edward is a contributing author of 97 Things Every
Software Architect Should Know.

Edward resides in Montreal with his wife and two sons. In his spare time, he
enjoys skiing, climbing, and cycle touring.

“Apply Functional Programming Principles,” page 4

Einar Landre

Einar Landre is a practicing software professional with 25 years’
experience as a developer, architect, manager, consultant, and
author/presenter. He currently works for StatoilHydro’s Business
Application Services, where he engages in business-critical appli-

cation development, architecture reviews, and software process improvement
activities. Before joining StatoilHydro, Einar held positions as developer,
consultant, and manager, working with the design and implementation of
communication protocols, operating systems, and test software for the Inter-
national Space Station. In recent years, he has become an active member of the
professional community, authoring or coauthoring several papers presented at
OOPSLA and SPE (Society of Petroleum Engineers). His professional interests
include object-oriented programming, autonomous systems design, use of sys-
tems engineering practices, agile methodologies, and leadership in high-tech
organizations.

Einar holds an MSc in information technology from the University of Strath-
clyde and is an IEEE-certified software development professional (CSDP). He
lives with his family in Stavanger, Norway.

“Encapsulate Behavior, Not Just State,” page 64
“Prefer Domain-Specific Types to Primitive Types,” page 130

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

203Contributors

Filip van Laenen

Filip van Laenen is a chief engineer at the Norwegian software com-
pany Computas AS, which supplies IT solutions to the public and the
private sector in Norway. He has over 10 years of experience in the
software industry, from being a developer in both small and large

teams to being the lead developer and compentency leader for security and soft-
ware engineering for the whole company. In his professional career, he has used a
number of programming languages, including Smalltalk, Java, Perl, Ruby, and PL/
SQL. He has a special interest in computer security and cryptography, and held the
position of chief security officer at Computas for a number of years.

Filip holds an MSc in electronics and an MSc in computer science from the
KULeuven. He comes originally from Flanders, but moved to Norway in 1997
and now lives with his family in Kolsås, near Oslo.

“Automate Your Coding Standard,” page 8

Gerard Meszaros

Gerard Meszaros is an independent software development con-
sultant, coach, and trainer with 25 years’ experience building
software and nearly a decade of experience applying agile meth-
ods such as Scrum, eXtreme Programming, and Lean. He speaks

regularly at software development and testing conferences such as OOPSLA,
Agile200x, and STAR. He is the author of xUnit Test Patterns: Refactoring Test
Code (Addison-Wesley) and runs the website http://xunitpatterns.com.

“Write Tests for People,” page 190

Giles Colborne

Giles Colborne has been working in usability for two decades at
British Aerospace, Institute of Physics Publishing, and Euro RSCG
group. In that time, he has spent hundreds of hours watching users
in the lab and in the field. In 2004, he cofounded cxpartners, a user-

centered design company that researches user behavior and designs user experi-
ences for clients all over the world, including Nokia, Marriott, and eBay.

He was president of the UK Usability Professionals’ Association from 2003 to
2007, and has worked with the British Standards Institute in developing stan-
dards and guidance on accessibility.

“Ask ‘What Would the User Do?’ (You Are Not the User),” page 6
“Prevent Errors,” page 132

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://xunitpatterns.com

204 Contributors

Giovanni Asproni

Giovanni Asproni is a freelance contractor and consultant living
in the UK. Despite the fact that he often gets hired as an architect,
team leader, trainer, and mentor, he is a programmer at heart,
with a taste for simple code. He is a regular conference speaker, a

member of the committee of the London XPDay conference, and the chair of
the ACCU conference. Giovanni is a member of the ACCU, the AgileAlliance,
the ACM, and the IEEE Computer Society.

“Choose Your Tools with Care,” page 20
“Learn to Estimate,” page 100

Greg Colvin

Greg Colvin has been hacking happily since 1972. When not
cranking code or reading technical prose, he runs his dog on the
beach or plays the blues in the local dives.

“Know Your Limits,” page 92

Gregor Hohpe

Gregor Hohpe is a software engineer with Google. He is best
known for his thoughts on asynchronous messaging and
 service-oriented architectures, which he shares in a number of
publications, including the seminal book Enterprise Integration

Patterns (Addison-Wesley Professional). Find out more about his work at
http://www.eaipatterns.com.

“Convenience Is Not an -ility,” page 38

Gudny Hauknes

Gudny Hauknes works as senior software developer at the Nor-
wegian division of the consultancy company Steria. Since 1987,
when she graduated from the Norwegian University of Technol-
ogy (NTH/NTNU), she has had different roles within system

development, project management, and quality assurance.

She is particularly interested in getting people to work together in a smooth
way, having fun, working effectively, and, of course, making quality software.

“Pair Program and Feel the Flow,” page 128

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.eaipatterns.com

205Contributors

Heinz Kabutz

Heinz Kabutz is the author of The Java Specialists’ Newsletter, an
advanced Java publication read by 50,000 Java specialists in 120
countries. Most of Heinz’s time is spent writing Java code as a
contractor for a number of companies. In addition, he lectures

companies on how to write more effective Java, taking advantage of its
advanced features.

Heinz is a Java Champion and was interviewed by Sun Microsystems (see http://
java.sun.com/developer/technicalArticles/Interviews/community/kabutz_qa.html).

“Know Your IDE,” page 90

jan Christiaan “jC” van Winkel

JC van Winkel is a trainer and courseware developer for the small
Dutch training and consulting company AT Computing. His
work focuses on UNIX/Linux (system administration, security,
performance analysis) and programming languages (mostly C,

C++, and Python). He is also the Dutch representative for C++ standardiza-
tion. JC was a board member of the Netherlands Unix User’s group (NLUUG)
for 12 years, during 6 of which he also served as chair.

“Use the Right Algorithm and Data Structure,” page 178

janet Gregory

The coauthor of Agile Testing: A Practical Guide for Agile Testers
and Teams (Addison-Wesley Professional), Janet Gregory is a
consultant who specializes in helping teams build quality systems
using agile methods. Based in Calgary, Canada, Janet’s greatest

passion is promoting agile quality processes. As tester or coach, she has helped
introduce agile development practices into companies and has successfully
transitioned several traditional test teams into the agile world. Her focus is work-
ing with business users and testers to understand their roles in agile projects.
Janet teaches courses on agile testing and is a frequent speaker at agile and testing
software conferences around the world. Read more at http://janetgregory.ca.

“When Programmers and Testers Collaborate,” page 184

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://java.sun.com/developer/technicalArticles/Interviews/community/kabutz_qa.html
http://java.sun.com/developer/technicalArticles/Interviews/community/kabutz_qa.html
http://janetgregory.ca

206 Contributors

jason P. Sage

Jason P. Sage is a computer consultant and business owner whose
primary focus is system design, integration, customer relationship
management (CRM), original server software, data processing, and
3D graphics software. Jason is a true programming enthusiast; he

got his start in 1981, when he was 10 years old, on a Timex Sinclair with 2k of
memory and a cassette recorder. Since then, he has written all sorts of software,
ranging from video games and an operating system to a warehouse management
system that runs one of the nation’s largest natural food distributors.

He is often engaged in online forums, assisting and teaching fellow program-
mers and students of all ages.

“Reinvent the Wheel Often,” page 144

johannes Brodwall

Johannes Brodwall is chief scientist at the Norwegian division of
the consulting company Steria. He likes to take a broad view of
projects to understand how multiple disciplines and technologies
can together (hopefully) create value for users of software sys-

tems. He organizes activities in the Oslo agile community. His two most time-
consuming activities are the Oslo Extreme Programming Meetup and the
annual Smidig 200x conferences, a Norwegian-language agile conference
(smidig is the Norwegian word for “agile”). He is a regular speaker at events in
the Oslo area and writes frequently about software development in his blog at
http://johannesbrodwall.com.

“Keep the Build Clean,” page 84
“Verbose Logging Will Disturb Your Sleep,” page 180

jon jagger

Jon Jagger is a self-employed software consultant/trainer/
programmer/mentor/enthusiast, etc., specializing in agile soft-
ware development (people and process), test-driven development,
UML, design, analysis, OO, and curly-bracket languages (C#, C,

C++, Java). He is a UK C panel member and a lapsed UK C++ panel member,
and served as the convenor and Principal UK Expert (PUKE!) for C#’s ECMA
standardization.

Jon is also the inventor of the Average Time To Green game. He has had numer-
ous articles published both online and in magazines and is the coauthor of

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://johannesbrodwall.com

207Contributors

two books: Microsoft® Visual C#® .NET Step by Step (Microsoft Press) and C#
Annotated Standard (Morgan Kaufmann).

Jon is married to the beautiful Natalie, and is the proud father of Ellie, Penny,
and Patrick. He is also a mad keen freshwater fisherman.

“Do Lots of Deliberate Practice,” page 44
“Make the Invisible More Visible,” page 112

jørn Ølmheim

Jørn Ølmheim is a practicing software professional with over 10
years of experience as a developer, architect, and author/presenter.
He currently works for Statoil, developing software for a number
of research projects, mostly using Java, Ruby, and Python with a

pinch of Fortran and C/C++ for high-performance computing. His main
interests include agile practices with an emphasis on developer craftsmanship,
programming languages, and autonomous systems.

In his spare time, he enjoys skiing, mountain biking, and spending time with
his family.

“Beauty Is in Simplicity,” page 10

Kari Røssland

Kari Røssland is a software developer at the Norwegian division
of the consulting company Steria. In the three years since she got
her master’s degree in computer science from NTNU in Trond-
heim, Norway, she has worked on several different projects. She

is particularly interested in agile development and is passionate about effi-
cient, joyful cooperation between participants in software projects.

“Pair Program and Feel the Flow,” page 128

Karianne Berg

Karianne Berg holds an MSc from University of Bergen, Norway,
and is currently employed at the Norwegian consulting firm
Objectware. She likes to contribute to making people better devel-
opers, and is co-organizer of the ROOTS and Smidig conferences,

as well as the Oslo XP Meetup. She has also presented at several conferences,
and was last seen at Smidig 2009. Karianne’s main fields of interest include
agile development, patterns, and the Spring framework.

“Read Code,” page 140

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

208 Contributors

Keith Braithwaite

Keith Braithwaite is a principal consultant with Zuhlke. He also
manages its Centre of Agile Practice. This group provides training,
coaching, mentoring, toolsmithing, and straightforward develop-
ment to enhance client teams’ capabilities. He has maintained

compilers, modeled GSM networks, and ported sat-nav sytems for startups,
product companies, and global service organizations. He has earned money
writing code in C, C++, Java, Python, and Smalltalk. Keith increasingly focuses
on the use of “checked examples” or “automated tests” as effective tools for
requirements gathering and analysis, system design, and project management.

His blog is at http://peripateticaxiom.blogspot.com/; find his conference presen-
tations at http://www.keithbraithwaite.demon.co.uk/professional/presentations/.

“Read the Humanities,” page 142
“Write Small Functions Using Examples,” page 188

Kevlin Henney

Kevlin Henney is an independent consultant and trainer. His
work focuses on patterns and architecture, programming tech-
niques and languages, and development process and practice. He
has been a columnist for various magazines and online publica-

tions, including The Register, Better Software, Java Report, CUJ, and C++
Report. Kevlin is coauthor of two volumes in the Pattern-Oriented Software
Architecture series: A Pattern Language for Distributed Computing and On Pat-
terns and Pattern Languages (Wiley). He also contributed to 97 Things Every
Software Architect Should Know.

“Comment Only What the Code Cannot Say,” page 34
“Test for Required Behavior, Not Incidental Behavior,” page 160
“Test Precisely and Concretely,” page 162

Kirk Pepperdine

Kirk Pepperdine works as an independent consultant offering
Java performance-related services. Prior to focusing on Java,
Kirk developed and tuned systems written in C/C++, Small-
talk, and a variety of other languages. Kirk has written many arti-

cles and spoken at several conferences on the subject of performance tuning.

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://peripateticaxiom.blogspot.com/
http://www.keithbraithwaite.demon.co.uk/professional/presentations/

209Contributors

He helped evolve http://www.javaperformancetuning.com as a resource for
performance-tuning tips and information.

“Missing Opportunities for Polymorphism,” page 118
“The Road to Performance Is Littered with Dirty Code Bombs,” page 148
“WET Dilutes Performance Bottlenecks,” page 182

Klaus Marquardt

Klaus Marquardt’s software development experience covers life-
support systems, international projects, frameworks and product
lines, and agility in regulated environments. He has documented
a series of diagnoses and therapies on software systems that stem

from his interest in the mutual influences of technology, humans, processes,
and organization; these can be found at http://www.sustainable-architecture.eu.
Furthermore, he enjoys writing patterns, running conference sessions that
explore new ground, and having a life beyond software.

“Learn Foreign Languages,” page 98
“The Longevity of Interim Solutions,” page 108

Linda Rising

Linda Rising has a PhD from Arizona State University and a
background that includes university teaching and industry work
in a variety of domains. An internationally known presenter on
patterns, retrospectives, agile development, and the change pro-

cess, Linda has authored numerous articles and four books, the most recent,
Fearless Change: Patterns for Introducing New Ideas (Addison-Wesley), with
Mary Lynn Manns.

“A Message to the Future,” page 116

Marcus Baker

Marcus Baker is a happy programmer who’s astonished that he
gets paid for it. The joy extends to telephony, data mining, robot-
ics, and web development. He is also an occasional writer and
columnist, and sometimes organizer of user groups and confer-

ences. Today, though, he has to look after the kids.

“Install Me,” page 80

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.javaperformancetuning.com
http://www.sustainable-architecture.eu

210 Contributors

Matt Doar

Matt Doar is a consultant working with software tools such as
version control (CVS, Subversion), build systems (make, SCons),
and bug trackers (Bugzilla, JIRA). Most of his clients are smaller
startups in Silicon Valley. Matt is also the author of O’Reilly’s

Practical Development Environments.

“How to Use a Bug Tracker,” page 76

Mattias Karlsson

Mattias Karlsson spends most of his time working with software
development in the financial sector as well as leading a Java User
Group in Stockholm, Sweden. Mattias has worked with OO soft-
ware development since 1993. Through the years, he has gained

experience in many different roles, including developer, architect, team leader,
coach, manager, and teacher. In these roles, he receives consistent feedback
about his ability to inspire and motivate the people he works with. The JUG
holds six to eight fully booked meetings per year, with more then 200 partici-
pants at every meeting. Mattias is also one of the organizers behind Jfokus.
Jfokus is the largest Java-focused annual conference in Stockholm.

In his spare time, Mattias can be found playing with his children or riding
his motorcycle, as well as changing underprivileged people’s lives by building
houses with Habitat for Humanity. Mattias also supports Kiva, a person-
to-person microloan organization. Join his effort to improve the world at
http://www.kiva.org/team/jug.

“Code Reviews,” page 28

Michael Feathers

Michael Feathers is a consultant with Object Mentor Interna-
tional. He balances his time between working with, training, and
coaching various teams around the world. Michael developed
CppUnit, the initial port of JUnit to C++, and FitCpp, a C++ port

of the Fit integrated-test framework. Michael is also the author of the book
Working Effectively with Legacy Code (Prentice Hall).

“The Golden Rule of API Design,” page 70

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.kiva.org/team/jug

211Contributors

Michael Hunger

Michael Hunger has been passionate about software develop-
ment since his childhood days in East Germany. He is particu-
larly interested in the people who develop software, software
craftsmanship, programming languages, and improving code.

While he likes coaching and in-project development as an independent con-
sultant (“better software development evangelist”—http://jexp.de), he really
enjoys the numerous other projects in his life.

One half of his life is devoted to his family of three kids, a longtime obsession with
a text-based multiuser dungeon (MUD MorgenGrauen), reading books whenever
possible, running his coffee shop “die-buchbar” with a workshop for printing on
things, and tinkering with and without Lego®. The other half is filled with working
with programming languages and learning new ones, enjoying IT podcasts (espe-
cially Software Engineering Radio; http://se-radio.net/), participating in exciting
and ambitious projects like qi4j, creating DSLs (jequel, squill, and xmldsl), lots
of refactoring, and contributing to and reviewing books in progress. Recently, he
started to present at conferences.

“Domain-Specific Languages,” page 46

Mike Lewis

Mike Lewis is currently a software engineer at Lutron Electron-
ics, and an independent software consultant in his spare time. He
applies over a decade of software engineering experience toward
designing elegant and intuitive software solutions. He is a process

improvement advocate whose passion lies in enhancing the user experience of
absolutely everything.

Mike holds a BS and an MS in computer engineering, both from the Rochester
Institute of Technology. Mike currently resides in Allentown, Pennsylvania,
just outside of New York City and Philadelphia.

“Don’t Be Afraid to Break Things,” page 48

Nate jackson

Nate Jackson is a senior software architect in Buffalo, New York.
He has been writing code of one kind or another since 1979,
when he got his TI-99 and a basic emulator cartridge. By follow-
ing his own advice, he has satisfied all of his customers—even the

lady who wanted the white background.

“Your Customers Do Not Mean What They Say,” page 194

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://jexp.de
http://se-radio.net/

212 Contributors

Neal Ford

Neal Ford is software architect and meme wrangler at Thought-
Works, a global IT consultancy with an exclusive focus on end-
to-end software development and delivery. He is the designer/
developer of applications, instructional materials, magazine arti-

cles, courseware, video/DVD presentations, and author and/or editor of five
books. He also speaks at lots of conferences. You can assuage your ravenous
curiosity about Neal at http://www.nealford.com.

“Testing Is the Engineering Rigor of Software Development,” page 166

Niclas Nilsson

Niclas Nilsson is a software development coach, consultant, edu-
cator, and writer with a deep passion for the craft and a love of
good design and architecture. He began working as a developer
in 1992. From his experience, he knows that some choices in soft-

ware development—like languages, tools, communication, and processes—
make a significant difference. This is the reason behind his affection for dynamic
languages, test-driven development, code generation, metaprogramming, and
agile processes. Niclas is a cofounder of factor10, and he is also an editor for the
architecture community at InfoQ. Niclas blogs at http://niclasnilsson.se.

“Thinking in States,” page 168

Olve Maudal

Olve Maudal lives in Norway. Married. Two kids. Dedicated
computer geek. These days, mostly coding in C and C++.

At university, he studied software engineering and artificial
intelligence. His professional career started in an oil service

company developing systems for finding oil and gas. He then spent a few
years developing systems for moving money. Now he works for a telecom
company developing systems for effective communication between people.

Olve is an active member of the vibrant geek community in Oslo, where,
among other things, he organizes the Oslo C++ Users Group. You can read his
blog at http://olvemaudal.wordpress.com.

“Hard Work Does Not Pay Off,” page 74

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.nealford.com
http://niclasnilsson.se
http://olvemaudal.wordpress.com

213Contributors

Paul W. Homer

Paul W. Homer is a software developer, writer, and occasional
photographer, who was drawn into software development several
decades ago and has been struggling ever since with trying to
build increasingly complex systems. His experience includes in-

house, consulting, and commercial development from a diverse array of con-
current posisions including analyst, architect, programmer, manager, and
even—foolishly—CTO. He is willing to play any role that is focused on getting
systems built and released.

Over the last few years, he has turned more of his attention toward commu-
nicating with his fellow developers, including a self-published book, blogging,
and way too much commenting in the hopes of helping an industry rationalize
itself and reach new heights.

“Simplicity Comes from Reduction,” page 150

Pete Goodliffe

Pete Goodliffe is a software developer, columnist, speaker, and
author who never stays at the same place in the software food chain.
He’s worked in numerous languages on diverse projects. He also
teaches and mentors programmers, and writes the regular “Profes-

sionalism in Programming” column for ACCU’s CVu magazine (http://accu.org/).

Pete’s popular book, Code Craft (No Starch Press), is a practical and entertain-
ing investigation of the entire programming pursuit. Pete enjoys writing excel-
lent, bug-free code, so he can spend more time having fun with his kids. He
has a passion for curry and doesn’t wear shoes.

“Don’t Ignore That Error!,” page 52
“Improve Code by Removing It,” page 78
“You Gotta Care About the Code,” page 192

Peter Sommerlad

Peter Sommerlad is professor and head of the Institute for Soft-
ware at HSR Rapperswil. Peter is coauthor of Pattern-Oriented
Software Architecture, Volume 1, and Security Patterns (both
Wiley). His long-term goal is to make software simpler through

decremental development: refactoring software down to 10% of its size with
better architecture, testability, quality, and functionality.

“Only the Code Tells the Truth,” page 124

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://accu.org/

214 Contributors

Rajith Attapattu

Rajith Attapattu is a senior software engineer on Red Hat’s MRG
team. Rajith is an open source enthusiast and has been a contribu-
tor on several Apache projects, including Apache Qpid, Apache
Synapse, Apache Tuscany, and Apache Axis2. His recent focus has

been on building scalable and reliable messaging middleware, and he is part of
the AMQP (Advanced Message Queuing Protocol) working group.

He has published several articles and spoken at several conferences and user
groups, including ApacheCon, Colorado Software Summit, and Toronto JUG.
Rajith’s research interests are in improving scalability and high availability of dis-
tributed systems. Rajith enjoys painting and playing cricket during his free time.

Rajith can be reached at rajith@apache.org, and he maintains a presence at
http://rajith.2rlabs.com.

“Before You Refactor,” page 12
“Test While You Sleep (and over Weekends),” page 164

Randy Stafford

Randy Stafford is a practicing software professional with 20 years’
experience as a developer, analyst, architect, manager, consultant,
and author/presenter. He’s currently a member of Oracle’s
A-Team, where he’s involved with POC projects, architecture

reviews, and production crises. He specializes in grid, SOA, performance, HA,
and JEE/ORM work.

Randy has been technical advisor to Rally Software, chief architect of IQNavi-
gator, director of development at SynXis, consultant for GemStone and Small-
talk, and a simulation specialist in the aerospace and CASE industries. He’s
contributed to 97 Things Every Software Architect Should Know, Patterns of
Enterprise Application Architecture (Wiley), and EJB Design Patterns (Addison-
Wesley Professional).

“Interprocess Communication Affects Application Response Time,” page 82

Richard Monson-Haefel

Richard Monson-Haefel, an independent software developer, has
coauthored all five editions of Enterprise JavaBeans and both edi-
tions of Java Message Service (both from O’Reilly), and authored
J2EE Web Services (Addison-Wesley). Richard is the editor of 97

Things Every Software Architect Should Know. He cofounded the OpenEJB

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://rajith.2rlabs.com

215Contributors

open source project, the EJB container for Apache Geronimo, and currently
consults as an iPhone and Microsoft Surface developer.

“Fulfill Your Ambitions with Open Source,” page 68

Robert C. Martin (Uncle Bob)

Robert C. Martin (Uncle Bob) has been a software professional
since 1970 and is founder and president of Object Mentor, Inc., in
Gurnee, Illinois. Object Mentor, Inc., is an international firm of
highly experienced software developers and managers who spe-

cialize in helping companies get their projects done. Object Mentor offers pro-
cess improvement consulting, object-oriented software design consulting,
training, and skill development services to major corporations worldwide.

Bob has published dozens of articles in various trade journals, and is a regular
speaker at international conferences and trade shows. He has authored and
edited many books, including Designing Object-Oriented C++ Applications
Using the Booch Method (Prentice Hall), Patterns Languages of Program Design
3 (Addison-Wesley Professional), More C++ Gems (Cambridge University
Press), Extreme Programming in Practice (Addison-Wesley Professional), Agile
Software Development: Principles, Patterns, and Practices, UML for Java Pro-
grammers, and Clean Code (all Prentice Hall).

A leader in the industry of software development, Bob served three years as
the editor-in-chief of the C++ Report, and he served as the first chairman of
the Agile Alliance.

“The Boy Scout Rule,” page 16
“The Professional Programmer,” page 134
“The Single Responsibility Principle,” page 152

Rod Begbie

Rod Begbie originally hails from Scotland, but currently leaves
his heart in San Francisco.

His day job is engineering lead and panda wrangler at Slide, Inc.
Previously, he was employed as an API architect at Current TV,

lurked in the R&D labs of Bose Corporation, consulted with Sapient, and
ducked out the (first) dot-com bubble-burst in the basement of a bank, build-
ing systems for fixed-income annuity analysis, which is as dull as it sounds.

“Don’t Be Cute with Your Test Data,” page 50

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

216 Contributors

Russel Winder

Russel Winder is a partner in Concertant LLP, which provides
analysis and consultancy on all aspects of parallelism, concurrency,
and multicore systems. He is also an independent consultant,
author, and trainer on programming, programming languages

(Java, Groovy, and Python), version control systems (Subversion, Bazaar, and
Git) and build frameworks (Gant, SCons, Gradle, Ant, and Maven). Russel is
author of Developing C++ Software (Wiley), and coauthor of Developing Java
Software (Wiley) and Python for Rookies (Cengage Learning Business Press).

“Know Well More Than Two Programming Languages,” page 88
“Message Passing Leads to Better Scalability in Parallel Systems,” page 114

Ryan Brush

Ryan Brush is a director and Distinguished Engineer with Cerner
Corporation, where he has worked since 1999. He is primarily
interested in the application of technology to healthcare.

“Code Is Design,” page 24
“The Guru Myth,” page 72

Sam Saariste

Sam Saariste has an MSc degree in electrical engineering and has
been developing software professionally since 1995. He has done
so in a variety of application areas, ranging from real-time speech
processing solutions for telecoms to financial trading applica-

tions for investment banking. His language of choice is C++, and he has been
a member of the BSI C++ panel since 2005. Sam has been a fan of agile devel-
opment methods since he discovered XP around 2000. He cares about high-
quality software and believes that with agile and lean, both higher quality and
higher productivity can be achieved simultaneously.

“Resist the Temptation of the Singleton Pattern,” page 146

Sarah Mount

Sarah Mount is a senior lecturer in computer science at the Univer-
sity of Wolverhampton. Her interests lie in the area of program-
ming languages and tools, especially for wireless sensor networks
and other distributed systems. She has taught introductory

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

217Contributors

programming to undergraduate students for nine years and is a coauthor of the
textbook Python for Rookies (Cengage Learning Business Press).

“Take Advantage of Code Analysis Tools,” page 158

Scott Meyers

Scott Meyers is an author, trainer, speaker, and consultant with
over three decades of experience in software development prac-
tice and research. He’s authored dozens of journal and magazine
articles, as well as the books Effective C++, More Effective C++,

and Effective STL (all Addison-Wesley Professional). He also designed and
oversaw their electronic publication in HTML and PDF forms. Scott is con-
sulting editor for Addison-Wesley’s Effective Software Development series and
was an inaugural member of the advisory board for the online journal, The
C++ Source (http://www.artima.com/cppsource). He received his PhD in com-
puter science from Brown University. His website is http://www.aristeia.com/.

“Make Interfaces Easy to Use Correctly and Hard to Use Incorrectly,” page 110

Seb Rose

Seb Rose is a principal software engineer working on the Rational
DOORS team in Edinburgh. He first worked as a programmer in
1980 writing applications for estate agents and solicitors in com-
piled BASIC on an Apple IIe. Upon graduating from Edinburgh

University in 1987, he worked on the REKURSIV project before becoming a
freelance contractor. Today, his primary software interests are agile practices
and the resuscitation of legacy code.

“Act with Prudence,” page 2

Steve Berczuk

Steve Berczuk is a software engineer at Humedica, where he
develops business intelligence solutions for the healthcare indus-
try. He has been developing software applications for over 20
years, and is the author of Software Configuration Management

Patterns: Effective Teamwork, Practical Integration (Addison-Wesley Profes-
sional). In addition to developing software, he enjoys helping teams deliver more
effectively through the use of agile methods and software configuration manage-
ment. His website is http://www.berczuk.com.

“Deploy Early and Often,” page 40
“Own (and Refactor) the Build,” page 126

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.artima.com/cppsource
http://www.aristeia.com/
http://www.berczuk.com

218 Contributors

Steve Freeman

Steve Freeman is an independent consultant specializing in agile
software development. He has led, coached, and trained teams
around the world. He is coauthor of the book Growing Object-
Oriented Software, Guided by Tests (Addison-Wesley). Steve is

one of the 2006 winners of the Agile Alliance Gordon Pask award. He is a com-
mitter to the jMock and Hamcrest projects, and was an author of NMock. He
is a founder member of the eXtreme Tuesday Club and was chair of the first
London XpDay. Steve has been an organizer and presenter at many international
industry conferences. Steve has a PhD from the University of Cambridge and, in
previous lives, took degrees in statistics and music. These days, he is interested
in writing better code and exploring organizational complexity.

“Code Layout Matters,” page 26
“One Binary,” page 122

Steve Smith

Steve Smith is a software developer, speaker, author, and mentor.
He has worked in the software development world professionally
since 1997 and has contributed to several books, primarily in the
ASP.NET space. He is a regular speaker at user groups and indus-

try conferences like DevConnections and Microsoft TechEd. Steve is also a
former U.S. Army Engineer Captain and a veteran of Operation Iraqi Free-
dom, where the platoon he led was involved in clearing unexploded munitions
and IEDs. Steve lives in Ohio with his wife and two children, and is one of the
coordinators of the Hudson Software Craftsmanship group in Hudson, Ohio.

“Don’t Repeat Yourself,” page 60

Thomas Guest

Thomas Guest is an experienced and enthusiastic computer pro-
grammer. He prefers high-level languages and simple solutions.
His writing has been published in a number of online and print
magazines as well as on his own site, http://www.wordaligned.org.

“Learn to Say ‘Hello, World’,” page 102

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.wordaligned.org

219Contributors

Udi Dahan

Udi Dahan is The Software Simplist, an internationally renowned
expert on software architecture and design. A solutions architec-
ture and connected systems MVP for four consecutive years, Udi
is also one of 33 experts in Europe recognized by the International

.NET Association, an author and trainer for the International Association of
Software Architects, and an SOA, Web Services, and XML Guru recommended
by DDJ.

When not consulting, speaking, or training, Udi leads the development of
NServiceBus, the most popular open source .NET enterprise service bus. He
can be contacted via his blog at http://www.UdiDahan.com.

“Beware the Share,” page 14

Verity Stob

Verity Stob is the pseudonym of a programmer based in London,
England. Although she professes competence in C++ and the usual
curly-bracketed scripting languages, and designs and writes code
for a number of platforms, she is probably at her happiest and does

least harm when she is making Windows programs in CodeGear’s Delphi.

For over 20 years, Verity has written supposedly amusing articles and columns
for various magazines, newspapers, and websites, including the legendary (i.e.,
long-defunct) .EXE Magazine, the mold-breaking (i.e., more recently defunct)
Dr. Dobb’s Journal, and the scurrilous (i.e., actually profitable) The Register. In
2005, she published a collection of these pieces as The Best of Verity Stob (Apress),
and so achieved a lifetime’s ambition—to be paid twice for the same work.

Verity regards her entry in Wikipedia as a travesty of brevity.

“Don’t Nail Your Program into the Upright Position,” page 56

Walter Bright

Walter Bright is a compiler writer, having implemented compil-
ers for C, C++, ECMAScript, ABEL, Java, and, most recently, the
D programming language. Walter is also known for inventing the
Empire strategy game.

“The Linker Is Not a Magical Program,” page 106

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

http://www.UdiDahan.com

220 Contributors

Yechiel Kimchi

Yechiel Kimchi is a mathematician (PhD in abstract set theory,
Hebrew University, Jerusalem), a computer scientist (teaching
more than 10 years with the CS faculty at The Technion, Israel),
and a software developer—spending more than 15 years alternat-

ing between working for big high-tech companies and working as a consultant
through his own small firm. Working initially in C, and then in C++, he is
interested in object orientation and the ways to develop software that is cor-
rect, maintainable, and efficient at the same time. Among other things, he
developed heuristics for efficiently solving practical NP-hard problems, but he
considers as his greatest achievement the influence he had on the technical
education of several thousand Israeli software engineers.

“Coding with Reason,” page 30

Yuriy zubarev

Yuriy Zubarev is a software architect and team lead with
YachtWorld.com, a division of Dominion Enterprises. His work
focuses on integration of software systems, knowledge gathering
and tracking techniques, and increasing the technical efficiency

and proficiency of his company. Yuriy lives and works in beautiful Vancouver
city in British Columbia, Canada. When he isn’t writing code, you can often
find him Latin dancing.

“Write Code As If You Had to Support It for the Rest of Your Life,” page 186

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

221Index

A
acceptance test-driven development

(ATDD), 184
Ada, 88, 130
Adams, Douglas, 112
algorithms, 178–179

catastrophic cancellation, 67
limits, 92
performance, 82
using caches, 93

Allison, Chuck
biography, 200
Floating-Point Numbers Aren’t Real,

66–67
analysis tools, 9, 158–159
AndroMDA, 47
ANTLR, 47
APIs, 38–39

API design, 70–71
internal DSLs, 46

The Art of Computer Programming, 179
Asproni, Giovanni

biography, 204
Choose Your Tools with Care, 20–21
Learn to Estimate, 100–101

Attapattu, Rajith
Before You Refactor, 12–13
biography, 214
Test While You Sleep (and over

Weekends), 164–165
automation, 156–157

automated tests, 165
automating coding standard, 8–9

B
Baden-Powell, Robert Stephenson Smyth,

16
Baker, Marcus

biography, 209
Install Me, 80–81

beautiful code, 10–11, 116–117
Begbie, Rod

biography, 215
Don’t Be Cute with Your Test Data,

50–51
Being and Time, 143
Berczuk, Steve

biography, 217
Deploy Early and Often, 40–41
Own (and Refactor) the Build,

126–127
Berg, Karianne

biography, 207
Read Code, 140–141

binary search, 93
binary, single, 122–123
biographies

Allison, Chuck, 200
Asproni, Giovanni, 204
Attapattu, Rajith, 214
Baker, Marcus, 209
Begbie, Rod, 215
Berczuk, Steve, 217
Berg, Karianne, 207
Braithwaite, Keith, 208
Bright, Walter, 219
Brodwall, Johannes, 206
Brush, Ryan, 216

Index

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

222 Index

Sage, Jason P., 206
Shank, Clint, 200
Smith, Steve, 218
Sommerlad, Peter, 213
Spinellis, Diomidis, 201
Stafford, Randy, 214
Stob, Verity, 219
van Laenen, Filip, 203
van Winkel, Jan Christiaan “JC”, 205
Wible, Adrian, 196
Winder, Russel, 216
Zubarev, Yuriy, 220

blaming others, 18–19, 76
bottlenecks

performance, 82, 182–183
process, 28

Boy Scout rule, 16–17
Braithwaite, Keith

biography, 208
Read the Humanities, 142–143
Write Small Functions Using

Examples, 188–189
breaking code, 7, 48–49
Bright, Walter

biography, 219
The Linker Is Not a Magical Program,

106–107
Brodwall, Johannes

biography, 206
Keep the Build Clean, 84–85
Verbose Logging Will Disturb Your

Sleep, 180–181
Brush, Ryan

biography, 216
Code Is Design, 24–25
The Guru Myth, 72–73

bug tracker, 76–77
builds

automating, 87, 156
breaking, 9
keeping clean, 84–85, 126–127
single binary, 122–123

build scripts, 126–127
bulletin boards, 113

C
C, 115

declarations, 107
Splint, 159

C#, 42, 54, 67, 70

biographies (continued)
Colborne, Giles, 203
Colvin, Greg, 204
Dahan, Udi, 219
Doar, Matt, 210
Evans, Cal, 199
Feathers, Michael, 210
Ford, Neal, 212
Freeman, Steve, 218
Gagnat, Ann Katrin, 198
Garson, Edward, 202
Goodliffe, Pete, 213
Gregory, Janet, 205
Griffiths, Alan, 196
Guest, Thomas, 218
Hauknes, Gudny, 204
Henney, Kevlin, 208
Hohpe, Gregor, 204
Homer, Paul W., 213
Horstmann, Cay, 199
Hufnagel, Burk, 198
Hunger, Michael, 211
Jackson, Nate, 211
Jagger, Jon, 206
Johnsson, Dan Bergh, 200
Kabutz, Heinz, 205
Karlsson, Mattias, 210
Kelly, Allan, 197
Khan, Aslam, 198
Kimchi, Yechiel, 220
Landre, Einar, 202
Lewis, Mike, 211
Lindner, Daniel, 201
Marquardt, Klaus, 209
Martin, Robert C. (Uncle Bob), 215
Maudal, Olve, 212
Meszaros, Gerard, 203
Meyers, Scott, 217
Miller, Alex, 197
Monson-Haefel, Richard, 214
Mount, Sarah, 216
Nilsson, Niclas, 212
Norås, Anders, 197
North, Dan, 201
Ølmheim, Jørn, 207
Pepperdine, Kirk, 208
Rising, Linda, 209
Robinson, Carroll, 199
Rose, Seb, 217
Røssland, Kari, 207
Saariste, Sam, 216

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

223Index

collaboration, 170–171
customers’ requests, 194
testers and programmers, 184–185

Colvin, Greg
biography, 204
Know Your Limits, 92–93

command-line build tools, 86–87
comments, 28, 32–35, 51, 124, 136, 158,

186
commitments, 94–95, 101
committing code, running tests before,

164
Communicating Sequential Processes

(CSP), 115
communicating with peers, 98–99
compiler bugs, 18
complexity analysis, 93–94
components, 20
concurrency, 114–115
continuous learning, 36–37
contradictions in code, 172–173
correctness of code, 30–31
customers’ requests, 194
CVS, 136

D
Dahan, Udi

Beware the Share, 14–15
biography, 219

D and declarations, 107
databases, 96–97
database, unresponsive, 43
dataflow system, 115
data structures, 178–179

using caches, 23, 82, 93
declarations, 107
decoupling code, 125
defaults, 133
definitions, 107
deliberate practice, 44–45
dependency inversion principle, 153
deployment process, 40–41
design, 24–25

API design, 70–71
Single Responsibility Principle,

152–153
dirty code, 148–149
Doar, Matt

biography, 210
How to Use a Bug Tracker, 76–77

C++, 56, 88, 115, 131
declarations, 107

caches, 83, 93
caller breaking method contract, 42
chaos, 1
Charlemagne, 99
COBOL, 26, 58
code

analysis tools, 158–159
as design, 24–25, 166
automating coding standard, 8–9
beautiful, 10–11
breaking, 48–49
caring about, 192–193
checking code before blaming others,

18–19
clear information, 124–125
comments, 32–35, 124
contradictions in, 172–173
decoupling, 125
dirty, 148–149
domain concepts, 22–23, 43, 46–47, 99,

130–131
duplication, 60
errors, 52–53
inappropriate text in, 50–51
layout, 26–27
libraries of shared code, 15–16
reading, 11, 26, 69, 140–141
reasoning semiformally about

correctness, 30–31
refactoring, 12–13, 125
removing, 78–79, 150–151
repetition

logic, 61
process calls, 60

reviews, 14, 28–29, 91
running tests before committing code,

164
simplicity, 150–151
source control (see source control)
static code analyzers, 30–31
structuring, 125
writing and supporting, 186–187

codebase, growing, 84–85
coding practices, 30–31
Colborne, Giles

Ask, “What Would the User Do?” (You
Are Not the User), 6–7

biography, 203
Prevent Errors, 132–133

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

224 Index

Fowler, Martin, 82
frameworks, 20

getting to know, 36
process models and message passing,

115
Freeman, Steve

biography, 218
Code Layout Matters, 26–27
One Binary, 122–123

free software, 21, 93, 136
functional programming, 4–5, 54, 88–89
functions, writing, 188–189

G
Gagnat, Ann Katrin

biography, 198
Pair Program and Feel the Flow,

128–129
Garson, Edward

Apply Functional Programming
Principles, 4–5

biography, 202
Git, 136
Goodliffe, Pete

biography, 213
Don’t Ignore That Error!, 52–53
Improve Code by Removing It, 78–79
You Gotta Care About the Code,

192–193
Google, 37, 68, 112, 204
Gregory, Janet

biography, 205
When Programmers and Testers

Collaborate, 184–185
Griffiths, Alan

biography, 196
Don’t Rely on “Magic Happens Here”,

58–59
Groovy, 115
Guest, Thomas

biography, 218
Learn to Say, “Hello, World”, 102–103

guru myth, 72–73

H
hard work, 74–75
Hauknes, Gudny

biography, 204
Pair Program and Feel the Flow,

128–129

domain concepts in code, 22–23
domain-logical problems, 43
domain-specific languages (DSLs), 46–47
domain-specific typing, 130–131
DRY (Don’t Repeat Yourself), 60–61,

182–183
Dugg, 51
duplication, 60, 126

E
EBNF, 47
encapsulation, 64–65

violating, 183
Erlang, 114
errno, 52
errors, 42, 52–53

builds, 85
code reviews, 28
formatting errors, 132
interfaces, 110–111
not handling, 53
preventing, 132–133
testing tests, 191

estimates, 100–101
Evans, Cal

A Comment on Comments, 32–33
biography, 199
Don’t Touch That Code!, 62–63

exceptions, 53
distinguishing business from technical,

42–43
multiple exception handlers, 56

external DSLs, 47
extreme feedback device (XFD), 104–105

F
false consensus bias, 6
Feathers, Michael

biography, 210
The Golden Rule of API Design, 70–71

file formats and automation, 157
Fit (Framework for Integrated Test), 184
Flibflarb, 51
floating-point numbers, 66–67
Ford, Neal

biography, 212
Testing Is the Engineering Rigor of

Software Development, 166–167
formatting errors, 132
Fortran, 54, 66, 88

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

225Index

Heidegger, Martin, 143
Hello, World program, 102–103
Henney, Kevlin

biography, 208
Comment Only What the Code

Cannot Say, 34–35
Test for Required Behavior, Not

Incidental Behavior, 160–161
Test Precisely and Concretely, 162–163

Hohpe, Gregor
biography, 204
Convenience Is Not an -ility, 38–39

Holmes, Sherlock, 19, 192
Homer, Paul W.

biography, 213
Simplicity Comes from Reduction,

150–151
Hopper, Grace, 58
Horstmann, Cay

biography, 199
Step Back and Automate, Automate,

Automate, 156–157
Hufnagel, Burk

biography, 198
News of the Weird: Testers Are Your

Friends, 120–121
Put the Mouse Down and Step Away

from the Keyboard, 138–139
humanities, reading, 142–143
Hunger, Michael

biography, 211
Domain-Specific Languages, 46–47

Hunt, Andy, 54, 60

i
IDEs

automation, 156
Unix tools, 176

IDEs (Integrated Development
Environments), 86–87, 90–91

IEEE floating-point numbers, 66–67
inappropriate text in code, 50–51
incremental changes, 12
incremental development, 113
installation process, 40–41
installing software, 80–81
interfaces, 110–111

designing, 111
preventing errors, 133

interim solutions, 108–109

internal DSLs, 46
interprocess communication, 82–83
invisibility, 112–113
issue tracker, 76–77

j
Jackson, Nate

biography, 211
Your Customers Do Not Mean What

They Say, 194–195
Jagger, Jon

biography, 206
Do Lots of Deliberate Practice, 44–45
Make the Invisible More Visible,

112–113
Java, 42, 55, 57, 64, 70, 85, 90, 97, 115, 131,

160, 188
internal DSLs, 46

Johnsson, Dan Bergh
biography, 200
Distinguish Business Exceptions from

Technical, 42–43
Know Your Next Commit, 94–95

K
Kabutz, Heinz

biography, 205
Know Your IDE, 90–91

Karlsson, Mattias
biography, 210
Code Reviews, 28–29

keeping a sustainable pace, 74–75
Kelly, Allan

biography, 197
Check Your Code First Before Looking

to Blame Others, 18–19
Two Wrongs Can Make a Right (and

Are Difficult to Fix), 172–173
Khan, Aslam

biography, 198
Ubuntu Coding for Your Friends,

174–175
Kimchi, Yechiel

biography, 220
Coding with Reason, 30–31

Klumpp, Allan, 172
Knuth, Donald, 179

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

226 Index

L
Landre, Einar

biography, 202
Encapsulate Behavior, Not Just State,

64–65
Prefer Domain-Specific Types to

Primitive Types, 130–131
languages, 54–55

communicating with peers, 98–99
knowing more than two, 88–89

layout of code, 26–27
learning, continuous, 36–37
Lee, Paul, 102
Lewis, Mike

biography, 211
Don’t Be Afraid to Break Things,

48–49
libraries, 15–16, 20

getting to know, 36
internal DSLs, 46
process models and message passing,

115
licensing terms, 21
limitations, knowing, 93–94
Lindner, Daniel

biography, 201
Let Your Project Speak for Itself,

104–105
linear search, 93
linkers, 106–107
LINQ, 55
LISP, 42

internal DSLs, 46
logging, verbose, 180–181

M
Marquardt, Klaus

biography, 209
Learn Foreign Languages, 98–99
The Longevity of Interim Solutions,

108–109
Martin, Robert C. (Uncle Bob)

biography, 215
The Boy Scout Rule, 16–17
The Professional Programmer,

134–135
The Single Responsibility Principle,

152–153

Maudal, Olve
biography, 212
Hard Work Does Not Pay Off, 74–75

McGuire, Kevin, 27
memory (cache), 93
mentors, 36
Mercurial, 136
Meszaros, Gerard

biography, 203
Write Tests for People, 190–191

Metaphors We Live By, 142
Meyers, Scott

biography, 217
Make Interfaces Easy to Use Correctly

and Hard to Use Incorrectly,
110–111

micro-optimization, 179
Miller, Alex

biography, 197
Start from Yes, 154–155

monitoring, 180–181
Monson-Haefel, Richard

biography, 214
Fulfill Your Ambitions with Open

Source, 68–69
Mount, Sarah

biography, 216
Take Advantage of Code Analysis

Tools, 158–159
multithreaded problems, 19

singletons and, 146–147
multithreaded systems, 115–116
Murrow, Edward R., xxiii
MySQL, 96

N
Natural Categories, 143
Nilsson, Niclas

biography, 212
Thinking in States, 168–169

Norås, Anders
biography, 197
Don’t Just Learn the Language,

Understand Its Culture, 54–55
North, Dan

biography, 201
Code in the Language of the Domain,

22–23
Norvig, Peter, 44
Nosek, J. T., 171

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

227Index

O
Ølmheim, Jørn

Beauty Is in Simplicity, 10–11
biography, 207

Once and Only Once principle, 61
openArchitectureWare, 47
Open/Closed Principle, 61
open source, 11, 68–69, 96, 140
optimization, 83, 92, 97, 148, 179
order, 1

P
pair programming, 128–129, 170–171
parallelism, 114–115
parsimony, 83
Pascal, 66, 88
Patterns of Enterprise Application

Architecture, 82
Pepperdine, Kirk

biography, 208
Missing Opportunities for

Polymorphism, 118–119
The Road to Performance Is Littered

with Dirty Code Bombs,
148–149

WET Dilutes Performance Bottlenecks,
182–183

performance
bottlenecks, 182–183
management, 82–83
tests, 165

Philosophical Investigations, 142
Plato, 10
polymorphism, 118–119
Poppendieck, Mary, 44
PostgreSQL, 96
The Pragmatic Programmer, 54, 60
process bottlenecks, 28
professional programmers, 134–135
profiling tool, 178
programming languages (see languages)
project management, providing estimates,

100–101
Prolog, 88
Pylint, 159
Python, 55, 67, 115, 131

Pylint, 159
standard library, 159

R
RDBMS systems, 96–97
readability of code, 10, 26–27, 31, 38,

46–47, 130, 163
reading code (see code, reading)
Reeves, Jack, 166
refactoring code, 12–13, 125
reinventing the wheel, 144–145, 179
removing code, 78–79, 150–151
repetition

logic, 61
practice, 44
process, 60

repetitive tasks, 156
response time, 82–83
return code, 52
reviews, code (see code, reviews)
ripple loading, 82
Rising, Linda

A Message to the Future, 116–117
biography, 209

Robinson, Carroll
biography, 199
Know How to Use Command-Line

Tools, 86–87
Rosch, Eleanor, 143
Rose, Seb

Act with Prudence, 2–3
biography, 217

Røssland, Kari
biography, 207
Pair Program and Feel the Flow,

128–129
Ruby, 55, 97

internal DSLs, 46

S
Saariste, Sam

biography, 216
Resist the Temptation of the Singleton

Pattern, 146–147
SableCC, 47
Sage, Jason P.

biography, 206
Reinvent the Wheel Often, 144–145

Scala, 55
internal DSLs, 46

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

228 Index

schedules
dirty code, 148–149
professional programmers, 134
technical debt, 2–3

Shank, Clint
biography, 200
Continuous Learning, 36–37

shared memory, 114–115
simplicity, 10–11, 150–151
single binary, 122–123
single responsibility principle, 152–153
Single Responsibility Principle, 61
singletons, 146–147

cleanup of, 147
Smalltalk, 42
smearing, 67
Smith, Steve

biography, 218
Don’t Repeat Yourself, 60–61

soak test, 164
software metrics, 148–149
solutions, interim, 108–109
Sommerlad, Peter

biography, 213
Only the Code Tells the Truth,

124–125
source control, 62–63, 136–137
Spinellis, Diomidis

biography, 201
Large, Interconnected Data Belongs to

a Database, 96–97
Put Everything Under Version Control,

136–137
The Unix Tools Are Your Friends,

176–177
Splint, 159
SQL, 96
Stafford, Randy

biography, 214
Interprocess Communication Affects

Application Response Time,
82–83

states, 168–169
static code analysis, 104
static code analyzers, 30–31
Stob, Verity

biography, 219
Don’t Nail Your Program into the

Upright Position, 56–57
Subversion, 136
symbols, 107

T
taking a break, 138–139
targets, 101, 123
technical debt, 2–3
testing, 120–121, 134, 166–167, 191

automated tests, 165
collaboration with programmers, 184–185
for required behavior, 160–161
performance tests, 165
precisely and concretely, 162–163
running tests before committing code,

164
soak test, 164
test data, inappropriate text in, 50–51
test servers, 164–165
valid and invalid states and transitions,

169
writing tests, 190–191

Thomas, Dave, 54, 60
tools

automation, 157
code analysis, 158–159
command-line build tools, 86–87
selecting, 20–21
Unix, 176–177

Twitter, 51
typing, domain-specific, 130–131

U
Ubuntu coding, 174–175
Uncle Bob (see Martin, Robert C.)
unit tests, 19, 71, 78, 113, 131

implicit persistent state, 146
Unix tools, 91, 176–177
users, thinking like, 6–7

V
van Emde Boas tree, 93
van Laenen, Filip

Automate Your Coding Standard, 8–9
biography, 203

van Winkel, Jan Christiaan “JC”
biography, 205
Use the Right Algorithm and Data

Structure, 178–179
vendor lock-in, 21
version control systems (see source control)
versioning environment information, 123
visual pattern matching, 26

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

229Index

W
WET (Write Every Time), 182–183
What is Software Design?, 166
Wible, Adrian

biography, 196
Two Heads Are Often Better Than

One, 170–171
Winder, Russel

biography, 216
Know Well More Than Two

Programming Languages, 88–89
Message Passing Leads to Better

Scalability in Parallel Systems,
114–115

Wittgenstein, Ludwig, 142
working together, 154–155, 170–171

collaboration between testers and
programmers, 184–185

customers’ requests, 194
working too hard, 74–75, 138–139

x
XFDs (extreme feedback device), 104–105
XML, 47

Y
yes, starting at, 154–155

z
Zubarev, Yuriy

biography, 220
Write Code As If You Had to Support

It for the Rest of Your Life,
186–187

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

The cover and heading font is Gotham; the text font is Minion Pro; and the
code font is TheSansMonoCondensed.

Colophon

www.irtanin.com wwww.irebooks.com www.omideiran.ir

کتابخانھ صوتی طنین ایرانی کتابخانھ امید ایران خبرخوان امید ایران

	Contributions by Category
	Preface
	Act with Prudence
	Seb Rose

	Apply Functional Programming Principles
	Edward Garson

	Ask, “What Would the User Do?” (You Are Not the User)
	Giles Colborne

	Automate Your Coding Standard
	Filip van Laenen

	Beauty Is in Simplicity
	Jørn Ølmheim

	Before You Refactor
	Rajith Attapattu

	Beware the Share
	Udi Dahan

	The Boy Scout Rule
	Robert C. Martin (Uncle Bob)

	Check Your Code First Before Looking to Blame Others
	Allan Kelly

	Choose Your Tools with Care
	Giovanni Asproni

	Code in the Language of the Domain
	Dan North

	Code Is Design
	Ryan Brush

	Code Layout Matters
	Steve Freeman

	Code Reviews
	Mattias Karlsson

	Coding with Reason
	Yechiel Kimchi

	A Comment on Comments
	Cal Evans

	Comment Only What the Code Cannot Say
	Kevlin Henney

	Continuous Learning
	Clint Shank

	Convenience Is Not an -ility
	Gregor Hohpe

	Deploy Early and Often
	Steve Berczuk

	Distinguish Business Exceptions from Technical
	Dan Bergh Johnsson

	Do Lots of Deliberate Practice
	Jon Jagger

	Domain-Specific Languages
	Michael Hunger

	Don’t Be Afraid to Break Things
	Mike Lewis

	Don’t Be Cute with Your Test Data
	Rod Begbie

	Don’t Ignore That Error!
	Pete Goodliffe

	Don’t Just Learn the Language, Understand Its Culture
	Anders Norås

	Don’t Nail Your Program into the Upright Position
	Verity Stob

	Don’t Rely on “Magic Happens Here”
	Alan Griffiths

	Don’t Repeat Yourself
	Steve Smith

	Don’t Touch That Code!
	Cal Evans

	Encapsulate Behavior, Not Just State
	Einar Landre

	Floating-Point Numbers Aren’t Real
	Chuck Allison

	Fulfill Your Ambitions with Open Source
	Richard Monson-Haefel

	The Golden Rule of API Design
	Michael Feathers

	The Guru Myth
	Ryan Brush

	Hard Work Does Not Pay Off
	Olve Maudal

	How to Use a Bug Tracker
	Matt Doar

	Improve Code by Removing It
	Pete Goodliffe

	Install Me
	Marcus Baker

	Interprocess Communication Affects Application Response Time
	Randy Stafford

	Keep the Build Clean
	Johannes Brodwall

	Know How to Use Command-Line Tools
	Carroll Robinson

	Know Well More Than Two Programming Languages
	Russel Winder

	Know Your IDE
	Heinz Kabutz

	Know Your Limits
	Greg Colvin

	Know Your Next Commit
	Dan Bergh Johnsson

	Large, Interconnected Data Belongs to a Database
	Diomidis Spinellis

	Learn Foreign Languages
	Klaus Marquardt

	Learn to Estimate
	Giovanni Asproni

	Learn to Say, “Hello, World”
	Thomas Guest

	Let Your Project Speak for Itself
	Daniel Lindner

	The Linker Is Not a Magical Program
	Walter Bright

	The Longevity of Interim Solutions
	Klaus Marquardt

	Make Interfaces Easy to Use Correctly and Hard to Use Incorrectly
	Scott Meyers

	Make the Invisible More Visible
	Jon Jagger

	Message Passing Leads to Better Scalability in Parallel Systems
	Russel Winder

	A Message to the Future
	Linda Rising

	Missing Opportunities for Polymorphism
	Kirk Pepperdine

	News of the Weird: Testers Are Your Friends
	Burk Hufnagel

	One Binary
	Steve Freeman

	Only the Code Tells the Truth
	Peter Sommerlad

	Own (and Refactor) the Build
	Steve Berczuk

	Pair Program and Feel the Flow
	Gudny Hauknes, Kari Røssland, and Ann Katrin Gagnat

	Prefer Domain-Specific Types to Primitive Types
	Einar Landre

	Prevent Errors
	Giles Colborne

	The Professional Programmer
	Robert C. Martin (Uncle Bob)

	Put Everything Under Version Control
	Diomidis Spinellis

	Put the Mouse Down and Step Away from the Keyboard
	Burk Hufnagel

	Read Code
	Karianne Berg

	Read the Humanities
	Keith Braithwaite

	Reinvent the Wheel Often
	Jason P. Sage

	Resist the Temptation of the Singleton Pattern
	Sam Saariste

	The Road to Performance Is Littered with Dirty Code Bombs
	Kirk Pepperdine

	Simplicity Comes from Reduction
	Paul W. Homer

	The Single Responsibility Principle
	Robert C. Martin (Uncle Bob)

	Start from Yes
	Alex Miller

	Step Back and Automate, Automate, Automate
	Cay Horstmann

	Take Advantage of Code Analysis Tools
	Sarah Mount

	Test for Required Behavior, Not Incidental Behavior
	Kevlin Henney

	Test Precisely and Concretely
	Kevlin Henney

	Test While You Sleep (and over Weekends)
	Rajith Attapattu

	Testing Is the Engineering Rigor of Software Development
	Neal Ford

	Thinking in States
	Niclas Nilsson

	Two Heads Are Often Better Than One
	Adrian Wible

	Two Wrongs Can Make a Right (and Are Difficult to Fix)
	Allan Kelly

	Ubuntu Coding for Your Friends
	Aslam Khan

	The Unix Tools Are Your Friends
	Diomidis Spinellis

	Use the Right Algorithm and Data Structure
	Jan Christiaan “JC” van Winkel

	Verbose Logging Will Disturb Your Sleep
	Johannes Brodwall

	WET Dilutes Performance Bottlenecks
	Kirk Pepperdine

	When Programmers and Testers Collaborate
	Janet Gregory

	Write Code As If You Had to Support It for the Rest of Your Life
	Yuriy Zubarev

	Write Small Functions Using Examples
	Keith Braithwaite

	Write Tests for People
	Gerard Meszaros

	You Gotta Care About the Code
	Pete Goodliffe

	Your Customers Do Not Mean What They Say
	Nate Jackson

	Contributors
	Index

